Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases

Wheatgrass Thinopyrum intermedium (Host), or Agropyron intermedium (Host) (2n = 42; genome formula, EEEˢᵗEˢᵗStSt) is one of the most valuable sources of highly effective resistance genes in wheat breeding. Bread wheat cultivars Tulaikovskaya 5, Tulaikovskaya 10, and Tulaikovskaya 100 derived from wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Euphytica 2015-07, Vol.204 (1), p.91-101
Hauptverfasser: Salina, Elena A, Adonina, Irina G, Badaeva, Ekaterina D, Kroupin, Pavel Yu, Stasyuk, Anatoliy I, Leonova, Irina N, Shishkina, Alexandra A, Divashuk, Mikhail G, Starikova, Elizaveta V, Khuat, Thi Mai L, Syukov, Valeriy V, Karlov, Gennady I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 1
container_start_page 91
container_title Euphytica
container_volume 204
creator Salina, Elena A
Adonina, Irina G
Badaeva, Ekaterina D
Kroupin, Pavel Yu
Stasyuk, Anatoliy I
Leonova, Irina N
Shishkina, Alexandra A
Divashuk, Mikhail G
Starikova, Elizaveta V
Khuat, Thi Mai L
Syukov, Valeriy V
Karlov, Gennady I
description Wheatgrass Thinopyrum intermedium (Host), or Agropyron intermedium (Host) (2n = 42; genome formula, EEEˢᵗEˢᵗStSt) is one of the most valuable sources of highly effective resistance genes in wheat breeding. Bread wheat cultivars Tulaikovskaya 5, Tulaikovskaya 10, and Tulaikovskaya 100 derived from wheat—Thinopyrum crosses are highly resistant to leaf rust and powdery mildew, and moderately resistant to stem and yellow rust. C-banding, in situ hybridization, and assays with PLUG and SSR markers have demonstrated that wheat chromosome 6D in all three cultivars is substituted by the Th. intermedium homoeologous chromosome, 6Ai. This chromosome was designated 6Ai#2, because it differs from the earlier described homoeologous chromosome 6Ai#1. In situ hybridization with Pseudoroegneria spicata and Dasypyrum villosum genomic DNAs has allowed chromosome 6Ai#2 to be assigned to the E (=J) subgenome. Chromosome 6Ai#2 remained intact over long-term breeding efforts. Tests of leaf rust resistance of in F₂ and F₃ populations from a cross of a leaf rust–susceptible cultivar with Tulaikovskaya 10 has demonstrated that chromosome 6Ai#2 carries at least one gene locus for leaf rust resistance. This locus was designated Lr6Ai#2. It must be different from the known gene locus Lr38, located on the long arm of chromosome 7Ai#2 and now present in many translocation variants in bread wheat. The effect of a chromosome from the Th. intermedium subgenome E on resistance to powdery mildew, stem and yellow rust in Tulaikovskaya 5, Tulaikovskaya 10, and Tulaikovskaya 100 is discussed.
doi_str_mv 10.1007/s10681-014-1344-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1773836560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714077079</galeid><sourcerecordid>A714077079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-28e59ccd494f940092f3d4c71223c842d63cefbf5bd6b0678cccc06e0f698def3</originalsourceid><addsrcrecordid>eNp9UsFu1DAQjRBILIUP4IQlLlxSxnZiJ8eqooBUiQPt2fI6411Xib14Emj_HkdBKiCEbcnWzHujN_NcVa85nHMA_Z44qI7XwJuay6ap2yfVjrda1i0oeFrtYM0IKdXz6gXRHQD0uoVddX9zDDGdHvIysRBnzBMOobzdMacpUZqwhNk-ox3YjyPambllnMN3m4nZchilJTtkybMDRiTmUvSYc4gHlpECzTaW9JyYX-LBjmwIhJaQXlbPvB0JX_26z6rbqw83l5_q6y8fP19eXNeu5TDXosO2d25o-sb3TVEtvBwap7kQ0nWNGJR06Pe-3Q9qD0p3rixQCF713YBenlXvtrqnnL4tSLOZAjkcRxsxLWS41rKTqlVQoG__gt6V5mJRZ3jHlWikgP4RVbpBE6JPc7ZuLWouNG9Aa9Ar6vwfqLIHnEKZEfpQ4n8Q-EZwORFl9OaUw2Tzg-FgVovNZrEpRprVYtMWjtg4dFoHjvk3wf8hvdlI3iZjDzmQuf0qgKvyRYRWIORPmyOynA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816243209</pqid></control><display><type>article</type><title>Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases</title><source>SpringerLink Journals - AutoHoldings</source><creator>Salina, Elena A ; Adonina, Irina G ; Badaeva, Ekaterina D ; Kroupin, Pavel Yu ; Stasyuk, Anatoliy I ; Leonova, Irina N ; Shishkina, Alexandra A ; Divashuk, Mikhail G ; Starikova, Elizaveta V ; Khuat, Thi Mai L ; Syukov, Valeriy V ; Karlov, Gennady I</creator><creatorcontrib>Salina, Elena A ; Adonina, Irina G ; Badaeva, Ekaterina D ; Kroupin, Pavel Yu ; Stasyuk, Anatoliy I ; Leonova, Irina N ; Shishkina, Alexandra A ; Divashuk, Mikhail G ; Starikova, Elizaveta V ; Khuat, Thi Mai L ; Syukov, Valeriy V ; Karlov, Gennady I</creatorcontrib><description>Wheatgrass Thinopyrum intermedium (Host), or Agropyron intermedium (Host) (2n = 42; genome formula, EEEˢᵗEˢᵗStSt) is one of the most valuable sources of highly effective resistance genes in wheat breeding. Bread wheat cultivars Tulaikovskaya 5, Tulaikovskaya 10, and Tulaikovskaya 100 derived from wheat—Thinopyrum crosses are highly resistant to leaf rust and powdery mildew, and moderately resistant to stem and yellow rust. C-banding, in situ hybridization, and assays with PLUG and SSR markers have demonstrated that wheat chromosome 6D in all three cultivars is substituted by the Th. intermedium homoeologous chromosome, 6Ai. This chromosome was designated 6Ai#2, because it differs from the earlier described homoeologous chromosome 6Ai#1. In situ hybridization with Pseudoroegneria spicata and Dasypyrum villosum genomic DNAs has allowed chromosome 6Ai#2 to be assigned to the E (=J) subgenome. Chromosome 6Ai#2 remained intact over long-term breeding efforts. Tests of leaf rust resistance of in F₂ and F₃ populations from a cross of a leaf rust–susceptible cultivar with Tulaikovskaya 10 has demonstrated that chromosome 6Ai#2 carries at least one gene locus for leaf rust resistance. This locus was designated Lr6Ai#2. It must be different from the known gene locus Lr38, located on the long arm of chromosome 7Ai#2 and now present in many translocation variants in bread wheat. The effect of a chromosome from the Th. intermedium subgenome E on resistance to powdery mildew, stem and yellow rust in Tulaikovskaya 5, Tulaikovskaya 10, and Tulaikovskaya 100 is discussed.</description><identifier>ISSN: 0014-2336</identifier><identifier>EISSN: 1573-5060</identifier><identifier>DOI: 10.1007/s10681-014-1344-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agropyron ; Airborne microorganisms ; Biomedical and Life Sciences ; Biotechnology ; Bread ; chromosome banding ; chromosome translocation ; Chromosomes ; crossing ; Cultivars ; Dasypyrum villosum ; fungi ; Gene loci ; Genes ; Genomics ; Hybridization ; in situ hybridization ; leaf rust ; leaves ; Life Sciences ; loci ; microsatellite repeats ; Mycoses ; Plant breeding ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant resistance ; Plant Sciences ; powdery mildew ; Pseudoroegneria spicata ; stripe rust ; Thinopyrum intermedium ; Thinopyrum intermedium subsp. intermedium ; Translocation ; Triticum aestivum ; Wheat</subject><ispartof>Euphytica, 2015-07, Vol.204 (1), p.91-101</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-28e59ccd494f940092f3d4c71223c842d63cefbf5bd6b0678cccc06e0f698def3</citedby><cites>FETCH-LOGICAL-c510t-28e59ccd494f940092f3d4c71223c842d63cefbf5bd6b0678cccc06e0f698def3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10681-014-1344-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10681-014-1344-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Salina, Elena A</creatorcontrib><creatorcontrib>Adonina, Irina G</creatorcontrib><creatorcontrib>Badaeva, Ekaterina D</creatorcontrib><creatorcontrib>Kroupin, Pavel Yu</creatorcontrib><creatorcontrib>Stasyuk, Anatoliy I</creatorcontrib><creatorcontrib>Leonova, Irina N</creatorcontrib><creatorcontrib>Shishkina, Alexandra A</creatorcontrib><creatorcontrib>Divashuk, Mikhail G</creatorcontrib><creatorcontrib>Starikova, Elizaveta V</creatorcontrib><creatorcontrib>Khuat, Thi Mai L</creatorcontrib><creatorcontrib>Syukov, Valeriy V</creatorcontrib><creatorcontrib>Karlov, Gennady I</creatorcontrib><title>Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases</title><title>Euphytica</title><addtitle>Euphytica</addtitle><description>Wheatgrass Thinopyrum intermedium (Host), or Agropyron intermedium (Host) (2n = 42; genome formula, EEEˢᵗEˢᵗStSt) is one of the most valuable sources of highly effective resistance genes in wheat breeding. Bread wheat cultivars Tulaikovskaya 5, Tulaikovskaya 10, and Tulaikovskaya 100 derived from wheat—Thinopyrum crosses are highly resistant to leaf rust and powdery mildew, and moderately resistant to stem and yellow rust. C-banding, in situ hybridization, and assays with PLUG and SSR markers have demonstrated that wheat chromosome 6D in all three cultivars is substituted by the Th. intermedium homoeologous chromosome, 6Ai. This chromosome was designated 6Ai#2, because it differs from the earlier described homoeologous chromosome 6Ai#1. In situ hybridization with Pseudoroegneria spicata and Dasypyrum villosum genomic DNAs has allowed chromosome 6Ai#2 to be assigned to the E (=J) subgenome. Chromosome 6Ai#2 remained intact over long-term breeding efforts. Tests of leaf rust resistance of in F₂ and F₃ populations from a cross of a leaf rust–susceptible cultivar with Tulaikovskaya 10 has demonstrated that chromosome 6Ai#2 carries at least one gene locus for leaf rust resistance. This locus was designated Lr6Ai#2. It must be different from the known gene locus Lr38, located on the long arm of chromosome 7Ai#2 and now present in many translocation variants in bread wheat. The effect of a chromosome from the Th. intermedium subgenome E on resistance to powdery mildew, stem and yellow rust in Tulaikovskaya 5, Tulaikovskaya 10, and Tulaikovskaya 100 is discussed.</description><subject>Agropyron</subject><subject>Airborne microorganisms</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Bread</subject><subject>chromosome banding</subject><subject>chromosome translocation</subject><subject>Chromosomes</subject><subject>crossing</subject><subject>Cultivars</subject><subject>Dasypyrum villosum</subject><subject>fungi</subject><subject>Gene loci</subject><subject>Genes</subject><subject>Genomics</subject><subject>Hybridization</subject><subject>in situ hybridization</subject><subject>leaf rust</subject><subject>leaves</subject><subject>Life Sciences</subject><subject>loci</subject><subject>microsatellite repeats</subject><subject>Mycoses</subject><subject>Plant breeding</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant resistance</subject><subject>Plant Sciences</subject><subject>powdery mildew</subject><subject>Pseudoroegneria spicata</subject><subject>stripe rust</subject><subject>Thinopyrum intermedium</subject><subject>Thinopyrum intermedium subsp. intermedium</subject><subject>Translocation</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><issn>0014-2336</issn><issn>1573-5060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UsFu1DAQjRBILIUP4IQlLlxSxnZiJ8eqooBUiQPt2fI6411Xib14Emj_HkdBKiCEbcnWzHujN_NcVa85nHMA_Z44qI7XwJuay6ap2yfVjrda1i0oeFrtYM0IKdXz6gXRHQD0uoVddX9zDDGdHvIysRBnzBMOobzdMacpUZqwhNk-ox3YjyPambllnMN3m4nZchilJTtkybMDRiTmUvSYc4gHlpECzTaW9JyYX-LBjmwIhJaQXlbPvB0JX_26z6rbqw83l5_q6y8fP19eXNeu5TDXosO2d25o-sb3TVEtvBwap7kQ0nWNGJR06Pe-3Q9qD0p3rixQCF713YBenlXvtrqnnL4tSLOZAjkcRxsxLWS41rKTqlVQoG__gt6V5mJRZ3jHlWikgP4RVbpBE6JPc7ZuLWouNG9Aa9Ar6vwfqLIHnEKZEfpQ4n8Q-EZwORFl9OaUw2Tzg-FgVovNZrEpRprVYtMWjtg4dFoHjvk3wf8hvdlI3iZjDzmQuf0qgKvyRYRWIORPmyOynA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Salina, Elena A</creator><creator>Adonina, Irina G</creator><creator>Badaeva, Ekaterina D</creator><creator>Kroupin, Pavel Yu</creator><creator>Stasyuk, Anatoliy I</creator><creator>Leonova, Irina N</creator><creator>Shishkina, Alexandra A</creator><creator>Divashuk, Mikhail G</creator><creator>Starikova, Elizaveta V</creator><creator>Khuat, Thi Mai L</creator><creator>Syukov, Valeriy V</creator><creator>Karlov, Gennady I</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TM</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20150701</creationdate><title>Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases</title><author>Salina, Elena A ; Adonina, Irina G ; Badaeva, Ekaterina D ; Kroupin, Pavel Yu ; Stasyuk, Anatoliy I ; Leonova, Irina N ; Shishkina, Alexandra A ; Divashuk, Mikhail G ; Starikova, Elizaveta V ; Khuat, Thi Mai L ; Syukov, Valeriy V ; Karlov, Gennady I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-28e59ccd494f940092f3d4c71223c842d63cefbf5bd6b0678cccc06e0f698def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agropyron</topic><topic>Airborne microorganisms</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Bread</topic><topic>chromosome banding</topic><topic>chromosome translocation</topic><topic>Chromosomes</topic><topic>crossing</topic><topic>Cultivars</topic><topic>Dasypyrum villosum</topic><topic>fungi</topic><topic>Gene loci</topic><topic>Genes</topic><topic>Genomics</topic><topic>Hybridization</topic><topic>in situ hybridization</topic><topic>leaf rust</topic><topic>leaves</topic><topic>Life Sciences</topic><topic>loci</topic><topic>microsatellite repeats</topic><topic>Mycoses</topic><topic>Plant breeding</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant resistance</topic><topic>Plant Sciences</topic><topic>powdery mildew</topic><topic>Pseudoroegneria spicata</topic><topic>stripe rust</topic><topic>Thinopyrum intermedium</topic><topic>Thinopyrum intermedium subsp. intermedium</topic><topic>Translocation</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salina, Elena A</creatorcontrib><creatorcontrib>Adonina, Irina G</creatorcontrib><creatorcontrib>Badaeva, Ekaterina D</creatorcontrib><creatorcontrib>Kroupin, Pavel Yu</creatorcontrib><creatorcontrib>Stasyuk, Anatoliy I</creatorcontrib><creatorcontrib>Leonova, Irina N</creatorcontrib><creatorcontrib>Shishkina, Alexandra A</creatorcontrib><creatorcontrib>Divashuk, Mikhail G</creatorcontrib><creatorcontrib>Starikova, Elizaveta V</creatorcontrib><creatorcontrib>Khuat, Thi Mai L</creatorcontrib><creatorcontrib>Syukov, Valeriy V</creatorcontrib><creatorcontrib>Karlov, Gennady I</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Euphytica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salina, Elena A</au><au>Adonina, Irina G</au><au>Badaeva, Ekaterina D</au><au>Kroupin, Pavel Yu</au><au>Stasyuk, Anatoliy I</au><au>Leonova, Irina N</au><au>Shishkina, Alexandra A</au><au>Divashuk, Mikhail G</au><au>Starikova, Elizaveta V</au><au>Khuat, Thi Mai L</au><au>Syukov, Valeriy V</au><au>Karlov, Gennady I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases</atitle><jtitle>Euphytica</jtitle><stitle>Euphytica</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>204</volume><issue>1</issue><spage>91</spage><epage>101</epage><pages>91-101</pages><issn>0014-2336</issn><eissn>1573-5060</eissn><abstract>Wheatgrass Thinopyrum intermedium (Host), or Agropyron intermedium (Host) (2n = 42; genome formula, EEEˢᵗEˢᵗStSt) is one of the most valuable sources of highly effective resistance genes in wheat breeding. Bread wheat cultivars Tulaikovskaya 5, Tulaikovskaya 10, and Tulaikovskaya 100 derived from wheat—Thinopyrum crosses are highly resistant to leaf rust and powdery mildew, and moderately resistant to stem and yellow rust. C-banding, in situ hybridization, and assays with PLUG and SSR markers have demonstrated that wheat chromosome 6D in all three cultivars is substituted by the Th. intermedium homoeologous chromosome, 6Ai. This chromosome was designated 6Ai#2, because it differs from the earlier described homoeologous chromosome 6Ai#1. In situ hybridization with Pseudoroegneria spicata and Dasypyrum villosum genomic DNAs has allowed chromosome 6Ai#2 to be assigned to the E (=J) subgenome. Chromosome 6Ai#2 remained intact over long-term breeding efforts. Tests of leaf rust resistance of in F₂ and F₃ populations from a cross of a leaf rust–susceptible cultivar with Tulaikovskaya 10 has demonstrated that chromosome 6Ai#2 carries at least one gene locus for leaf rust resistance. This locus was designated Lr6Ai#2. It must be different from the known gene locus Lr38, located on the long arm of chromosome 7Ai#2 and now present in many translocation variants in bread wheat. The effect of a chromosome from the Th. intermedium subgenome E on resistance to powdery mildew, stem and yellow rust in Tulaikovskaya 5, Tulaikovskaya 10, and Tulaikovskaya 100 is discussed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10681-014-1344-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-2336
ispartof Euphytica, 2015-07, Vol.204 (1), p.91-101
issn 0014-2336
1573-5060
language eng
recordid cdi_proquest_miscellaneous_1773836560
source SpringerLink Journals - AutoHoldings
subjects Agropyron
Airborne microorganisms
Biomedical and Life Sciences
Biotechnology
Bread
chromosome banding
chromosome translocation
Chromosomes
crossing
Cultivars
Dasypyrum villosum
fungi
Gene loci
Genes
Genomics
Hybridization
in situ hybridization
leaf rust
leaves
Life Sciences
loci
microsatellite repeats
Mycoses
Plant breeding
Plant Genetics and Genomics
Plant Pathology
Plant Physiology
Plant resistance
Plant Sciences
powdery mildew
Pseudoroegneria spicata
stripe rust
Thinopyrum intermedium
Thinopyrum intermedium subsp. intermedium
Translocation
Triticum aestivum
Wheat
title Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thinopyrum%20intermedium%20chromosome%20in%20bread%20wheat%20cultivars%20as%20a%20source%20of%20genes%20conferring%20resistance%20to%20fungal%20diseases&rft.jtitle=Euphytica&rft.au=Salina,%20Elena%20A&rft.date=2015-07-01&rft.volume=204&rft.issue=1&rft.spage=91&rft.epage=101&rft.pages=91-101&rft.issn=0014-2336&rft.eissn=1573-5060&rft_id=info:doi/10.1007/s10681-014-1344-5&rft_dat=%3Cgale_proqu%3EA714077079%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816243209&rft_id=info:pmid/&rft_galeid=A714077079&rfr_iscdi=true