A20 targets caspase-8 and FADD to protect HTLV-I-infected cells

Adult T-cell leukemia (ATL) arises from a human T-cell leukemia virus type I (HTLV-I)-infected cell and has few therapeutic options. Here, we have uncovered a previously unrecognized role for a ubiquitin-editing enzyme A20 in the survival of HTLV-I-infected cells. Unlike in lymphomas of the B-cell l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2016-03, Vol.30 (3), p.716-727
Hauptverfasser: Saitoh, Y, Hamano, A, Mochida, K, Kakeya, A, Uno, M, Tsuruyama, E, Ichikawa, H, Tokunaga, F, Utsunomiya, A, Watanabe, T, Yamaoka, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 727
container_issue 3
container_start_page 716
container_title Leukemia
container_volume 30
creator Saitoh, Y
Hamano, A
Mochida, K
Kakeya, A
Uno, M
Tsuruyama, E
Ichikawa, H
Tokunaga, F
Utsunomiya, A
Watanabe, T
Yamaoka, S
description Adult T-cell leukemia (ATL) arises from a human T-cell leukemia virus type I (HTLV-I)-infected cell and has few therapeutic options. Here, we have uncovered a previously unrecognized role for a ubiquitin-editing enzyme A20 in the survival of HTLV-I-infected cells. Unlike in lymphomas of the B-cell lineage, A20 is abundantly expressed in primary ATL cells without notable mutations. Depletion of A20 in HTLV-I-infected cells resulted in caspase activation, cell death induction and impaired tumorigenicity in mouse xenograft models. Mechanistically, A20 stably interacts with caspase-8 and Fas-associated via death domain (FADD) in HTLV-I-infected cells. Mutational studies revealed that A20 supports the growth of HTLV-I-infected cells independent of its catalytic functions and that the zinc-finger domains are required for the interaction with and regulation of caspases. These results indicate a pivotal role for A20 in the survival of HTLV-I-infected cells and implicate A20 as a potential therapeutic target in ATL.
doi_str_mv 10.1038/leu.2015.267
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1773832477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A447637125</galeid><sourcerecordid>A447637125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c788t-7dd7a312fae0406087c673fff9cdf76c4d605dc6b55c3eb5166e308c4910a7033</originalsourceid><addsrcrecordid>eNqNksFr2zAUxsXYWLN2t52HYTB2qNMnydKTTyW061oI7NLtKhT5OXVx7MySD_vvJ5NuTUcJRQchvZ8-Sd_7GPvAYc5BmrOWxrkAruZC4ys24wXqXCnFX7MZGIO5LkVxxN6FcA8wFfVbdiR0IRENn7HzhYAsumFNMWTeha0LlJvMdVV2tbi8zGKfbYc-ko_Z9e3yZ36TN12dVlRlnto2nLA3tWsDvX-Yj9mPq6-3F9f58vu3m4vFMvdoTMyxqtBJLmpHUIAGg16jrOu69FWN2heVBlV5vVLKS1oprjVJML4oOTgEKY_Zl51ues2vkUK0myZML3Ad9WOwHFEaKYo0vQAFwVFxk9BP_6H3_Th06SM2WaSwkELpQxRHXWpAAeUjtXYt2eRSHwfnp6vtQisAZdJfDlJF6o5ELlSi5s9QaVS0aXzfUd2k_SeyLzqwf8PnvQN35Np4F_p2jE3fhafKB8F9xdMd6Ic-hIFqux2ajRt-Ww52SqpNSbVTUpO3U5c-Ppg6rjZU_YP_RjMB-Q4IqdStadhz_TnBP5fA6Fc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1769607209</pqid></control><display><type>article</type><title>A20 targets caspase-8 and FADD to protect HTLV-I-infected cells</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Saitoh, Y ; Hamano, A ; Mochida, K ; Kakeya, A ; Uno, M ; Tsuruyama, E ; Ichikawa, H ; Tokunaga, F ; Utsunomiya, A ; Watanabe, T ; Yamaoka, S</creator><creatorcontrib>Saitoh, Y ; Hamano, A ; Mochida, K ; Kakeya, A ; Uno, M ; Tsuruyama, E ; Ichikawa, H ; Tokunaga, F ; Utsunomiya, A ; Watanabe, T ; Yamaoka, S</creatorcontrib><description>Adult T-cell leukemia (ATL) arises from a human T-cell leukemia virus type I (HTLV-I)-infected cell and has few therapeutic options. Here, we have uncovered a previously unrecognized role for a ubiquitin-editing enzyme A20 in the survival of HTLV-I-infected cells. Unlike in lymphomas of the B-cell lineage, A20 is abundantly expressed in primary ATL cells without notable mutations. Depletion of A20 in HTLV-I-infected cells resulted in caspase activation, cell death induction and impaired tumorigenicity in mouse xenograft models. Mechanistically, A20 stably interacts with caspase-8 and Fas-associated via death domain (FADD) in HTLV-I-infected cells. Mutational studies revealed that A20 supports the growth of HTLV-I-infected cells independent of its catalytic functions and that the zinc-finger domains are required for the interaction with and regulation of caspases. These results indicate a pivotal role for A20 in the survival of HTLV-I-infected cells and implicate A20 as a potential therapeutic target in ATL.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/leu.2015.267</identifier><identifier>PMID: 26437781</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/2 ; 13/95 ; 38/109 ; 38/89 ; 631/67/395 ; 631/80/82/23 ; 631/80/86 ; 64/60 ; 82/80 ; Adult ; Animal models ; Animals ; Cancer Research ; Care and treatment ; Caspase 3 - genetics ; Caspase 3 - metabolism ; Caspase 7 - genetics ; Caspase 7 - metabolism ; Caspase 8 - genetics ; Caspase 8 - metabolism ; Caspase-8 ; Cell activation ; Cell Death ; Cell Line ; Cell lineage ; Cellular proteins ; Critical Care Medicine ; Depletion ; Development and progression ; DNA-Binding Proteins - antagonists &amp; inhibitors ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Domains ; FADD protein ; Fas-Associated Death Domain Protein - genetics ; Fas-Associated Death Domain Protein - metabolism ; Female ; Gene Expression Regulation, Leukemic ; Genetic aspects ; Genetic Vectors ; Health aspects ; HEK293 Cells ; Hematology ; Host-Pathogen Interactions ; HTLV infections ; Human T-lymphotropic virus 1 ; Human T-lymphotropic virus 1 - genetics ; Human T-lymphotropic virus 1 - pathogenicity ; Humans ; Intensive ; Internal Medicine ; Intracellular Signaling Peptides and Proteins - antagonists &amp; inhibitors ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Lentivirus - genetics ; Leukemia ; Leukemia-Lymphoma, Adult T-Cell - genetics ; Leukemia-Lymphoma, Adult T-Cell - metabolism ; Leukemia-Lymphoma, Adult T-Cell - pathology ; Leukemia-Lymphoma, Adult T-Cell - virology ; Lymphocytes B ; Lymphocytes T ; Lymphoma ; Medicine ; Medicine &amp; Public Health ; Methods ; Mice ; Mice, Inbred NOD ; Molecular targeted therapy ; Mutation ; Neoplasm Transplantation ; Nuclear Proteins - antagonists &amp; inhibitors ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Oncology ; original-article ; Retroviridae ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Signal Transduction ; Survival ; Therapeutic targets ; Tumor Burden ; Tumor Necrosis Factor alpha-Induced Protein 3 ; Tumorigenicity ; Ubiquitin ; Ubiquitin-proteasome system ; Viruses ; Xenografts ; Xenotransplantation ; Zinc finger proteins</subject><ispartof>Leukemia, 2016-03, Vol.30 (3), p.716-727</ispartof><rights>Macmillan Publishers Limited 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2016</rights><rights>Macmillan Publishers Limited 2016.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c788t-7dd7a312fae0406087c673fff9cdf76c4d605dc6b55c3eb5166e308c4910a7033</citedby><cites>FETCH-LOGICAL-c788t-7dd7a312fae0406087c673fff9cdf76c4d605dc6b55c3eb5166e308c4910a7033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/leu.2015.267$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/leu.2015.267$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26437781$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saitoh, Y</creatorcontrib><creatorcontrib>Hamano, A</creatorcontrib><creatorcontrib>Mochida, K</creatorcontrib><creatorcontrib>Kakeya, A</creatorcontrib><creatorcontrib>Uno, M</creatorcontrib><creatorcontrib>Tsuruyama, E</creatorcontrib><creatorcontrib>Ichikawa, H</creatorcontrib><creatorcontrib>Tokunaga, F</creatorcontrib><creatorcontrib>Utsunomiya, A</creatorcontrib><creatorcontrib>Watanabe, T</creatorcontrib><creatorcontrib>Yamaoka, S</creatorcontrib><title>A20 targets caspase-8 and FADD to protect HTLV-I-infected cells</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>Adult T-cell leukemia (ATL) arises from a human T-cell leukemia virus type I (HTLV-I)-infected cell and has few therapeutic options. Here, we have uncovered a previously unrecognized role for a ubiquitin-editing enzyme A20 in the survival of HTLV-I-infected cells. Unlike in lymphomas of the B-cell lineage, A20 is abundantly expressed in primary ATL cells without notable mutations. Depletion of A20 in HTLV-I-infected cells resulted in caspase activation, cell death induction and impaired tumorigenicity in mouse xenograft models. Mechanistically, A20 stably interacts with caspase-8 and Fas-associated via death domain (FADD) in HTLV-I-infected cells. Mutational studies revealed that A20 supports the growth of HTLV-I-infected cells independent of its catalytic functions and that the zinc-finger domains are required for the interaction with and regulation of caspases. These results indicate a pivotal role for A20 in the survival of HTLV-I-infected cells and implicate A20 as a potential therapeutic target in ATL.</description><subject>13/2</subject><subject>13/95</subject><subject>38/109</subject><subject>38/89</subject><subject>631/67/395</subject><subject>631/80/82/23</subject><subject>631/80/86</subject><subject>64/60</subject><subject>82/80</subject><subject>Adult</subject><subject>Animal models</subject><subject>Animals</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>Caspase 3 - genetics</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase 7 - genetics</subject><subject>Caspase 7 - metabolism</subject><subject>Caspase 8 - genetics</subject><subject>Caspase 8 - metabolism</subject><subject>Caspase-8</subject><subject>Cell activation</subject><subject>Cell Death</subject><subject>Cell Line</subject><subject>Cell lineage</subject><subject>Cellular proteins</subject><subject>Critical Care Medicine</subject><subject>Depletion</subject><subject>Development and progression</subject><subject>DNA-Binding Proteins - antagonists &amp; inhibitors</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Domains</subject><subject>FADD protein</subject><subject>Fas-Associated Death Domain Protein - genetics</subject><subject>Fas-Associated Death Domain Protein - metabolism</subject><subject>Female</subject><subject>Gene Expression Regulation, Leukemic</subject><subject>Genetic aspects</subject><subject>Genetic Vectors</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Hematology</subject><subject>Host-Pathogen Interactions</subject><subject>HTLV infections</subject><subject>Human T-lymphotropic virus 1</subject><subject>Human T-lymphotropic virus 1 - genetics</subject><subject>Human T-lymphotropic virus 1 - pathogenicity</subject><subject>Humans</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Intracellular Signaling Peptides and Proteins - antagonists &amp; inhibitors</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Lentivirus - genetics</subject><subject>Leukemia</subject><subject>Leukemia-Lymphoma, Adult T-Cell - genetics</subject><subject>Leukemia-Lymphoma, Adult T-Cell - metabolism</subject><subject>Leukemia-Lymphoma, Adult T-Cell - pathology</subject><subject>Leukemia-Lymphoma, Adult T-Cell - virology</subject><subject>Lymphocytes B</subject><subject>Lymphocytes T</subject><subject>Lymphoma</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Molecular targeted therapy</subject><subject>Mutation</subject><subject>Neoplasm Transplantation</subject><subject>Nuclear Proteins - antagonists &amp; inhibitors</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Oncology</subject><subject>original-article</subject><subject>Retroviridae</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Signal Transduction</subject><subject>Survival</subject><subject>Therapeutic targets</subject><subject>Tumor Burden</subject><subject>Tumor Necrosis Factor alpha-Induced Protein 3</subject><subject>Tumorigenicity</subject><subject>Ubiquitin</subject><subject>Ubiquitin-proteasome system</subject><subject>Viruses</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><subject>Zinc finger proteins</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNksFr2zAUxsXYWLN2t52HYTB2qNMnydKTTyW061oI7NLtKhT5OXVx7MySD_vvJ5NuTUcJRQchvZ8-Sd_7GPvAYc5BmrOWxrkAruZC4ys24wXqXCnFX7MZGIO5LkVxxN6FcA8wFfVbdiR0IRENn7HzhYAsumFNMWTeha0LlJvMdVV2tbi8zGKfbYc-ko_Z9e3yZ36TN12dVlRlnto2nLA3tWsDvX-Yj9mPq6-3F9f58vu3m4vFMvdoTMyxqtBJLmpHUIAGg16jrOu69FWN2heVBlV5vVLKS1oprjVJML4oOTgEKY_Zl51ues2vkUK0myZML3Ad9WOwHFEaKYo0vQAFwVFxk9BP_6H3_Th06SM2WaSwkELpQxRHXWpAAeUjtXYt2eRSHwfnp6vtQisAZdJfDlJF6o5ELlSi5s9QaVS0aXzfUd2k_SeyLzqwf8PnvQN35Np4F_p2jE3fhafKB8F9xdMd6Ic-hIFqux2ajRt-Ww52SqpNSbVTUpO3U5c-Ppg6rjZU_YP_RjMB-Q4IqdStadhz_TnBP5fA6Fc</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Saitoh, Y</creator><creator>Hamano, A</creator><creator>Mochida, K</creator><creator>Kakeya, A</creator><creator>Uno, M</creator><creator>Tsuruyama, E</creator><creator>Ichikawa, H</creator><creator>Tokunaga, F</creator><creator>Utsunomiya, A</creator><creator>Watanabe, T</creator><creator>Yamaoka, S</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20160301</creationdate><title>A20 targets caspase-8 and FADD to protect HTLV-I-infected cells</title><author>Saitoh, Y ; Hamano, A ; Mochida, K ; Kakeya, A ; Uno, M ; Tsuruyama, E ; Ichikawa, H ; Tokunaga, F ; Utsunomiya, A ; Watanabe, T ; Yamaoka, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c788t-7dd7a312fae0406087c673fff9cdf76c4d605dc6b55c3eb5166e308c4910a7033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/2</topic><topic>13/95</topic><topic>38/109</topic><topic>38/89</topic><topic>631/67/395</topic><topic>631/80/82/23</topic><topic>631/80/86</topic><topic>64/60</topic><topic>82/80</topic><topic>Adult</topic><topic>Animal models</topic><topic>Animals</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>Caspase 3 - genetics</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase 7 - genetics</topic><topic>Caspase 7 - metabolism</topic><topic>Caspase 8 - genetics</topic><topic>Caspase 8 - metabolism</topic><topic>Caspase-8</topic><topic>Cell activation</topic><topic>Cell Death</topic><topic>Cell Line</topic><topic>Cell lineage</topic><topic>Cellular proteins</topic><topic>Critical Care Medicine</topic><topic>Depletion</topic><topic>Development and progression</topic><topic>DNA-Binding Proteins - antagonists &amp; inhibitors</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Domains</topic><topic>FADD protein</topic><topic>Fas-Associated Death Domain Protein - genetics</topic><topic>Fas-Associated Death Domain Protein - metabolism</topic><topic>Female</topic><topic>Gene Expression Regulation, Leukemic</topic><topic>Genetic aspects</topic><topic>Genetic Vectors</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Hematology</topic><topic>Host-Pathogen Interactions</topic><topic>HTLV infections</topic><topic>Human T-lymphotropic virus 1</topic><topic>Human T-lymphotropic virus 1 - genetics</topic><topic>Human T-lymphotropic virus 1 - pathogenicity</topic><topic>Humans</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Intracellular Signaling Peptides and Proteins - antagonists &amp; inhibitors</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Lentivirus - genetics</topic><topic>Leukemia</topic><topic>Leukemia-Lymphoma, Adult T-Cell - genetics</topic><topic>Leukemia-Lymphoma, Adult T-Cell - metabolism</topic><topic>Leukemia-Lymphoma, Adult T-Cell - pathology</topic><topic>Leukemia-Lymphoma, Adult T-Cell - virology</topic><topic>Lymphocytes B</topic><topic>Lymphocytes T</topic><topic>Lymphoma</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Molecular targeted therapy</topic><topic>Mutation</topic><topic>Neoplasm Transplantation</topic><topic>Nuclear Proteins - antagonists &amp; inhibitors</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Oncology</topic><topic>original-article</topic><topic>Retroviridae</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Signal Transduction</topic><topic>Survival</topic><topic>Therapeutic targets</topic><topic>Tumor Burden</topic><topic>Tumor Necrosis Factor alpha-Induced Protein 3</topic><topic>Tumorigenicity</topic><topic>Ubiquitin</topic><topic>Ubiquitin-proteasome system</topic><topic>Viruses</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saitoh, Y</creatorcontrib><creatorcontrib>Hamano, A</creatorcontrib><creatorcontrib>Mochida, K</creatorcontrib><creatorcontrib>Kakeya, A</creatorcontrib><creatorcontrib>Uno, M</creatorcontrib><creatorcontrib>Tsuruyama, E</creatorcontrib><creatorcontrib>Ichikawa, H</creatorcontrib><creatorcontrib>Tokunaga, F</creatorcontrib><creatorcontrib>Utsunomiya, A</creatorcontrib><creatorcontrib>Watanabe, T</creatorcontrib><creatorcontrib>Yamaoka, S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saitoh, Y</au><au>Hamano, A</au><au>Mochida, K</au><au>Kakeya, A</au><au>Uno, M</au><au>Tsuruyama, E</au><au>Ichikawa, H</au><au>Tokunaga, F</au><au>Utsunomiya, A</au><au>Watanabe, T</au><au>Yamaoka, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A20 targets caspase-8 and FADD to protect HTLV-I-infected cells</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>30</volume><issue>3</issue><spage>716</spage><epage>727</epage><pages>716-727</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>Adult T-cell leukemia (ATL) arises from a human T-cell leukemia virus type I (HTLV-I)-infected cell and has few therapeutic options. Here, we have uncovered a previously unrecognized role for a ubiquitin-editing enzyme A20 in the survival of HTLV-I-infected cells. Unlike in lymphomas of the B-cell lineage, A20 is abundantly expressed in primary ATL cells without notable mutations. Depletion of A20 in HTLV-I-infected cells resulted in caspase activation, cell death induction and impaired tumorigenicity in mouse xenograft models. Mechanistically, A20 stably interacts with caspase-8 and Fas-associated via death domain (FADD) in HTLV-I-infected cells. Mutational studies revealed that A20 supports the growth of HTLV-I-infected cells independent of its catalytic functions and that the zinc-finger domains are required for the interaction with and regulation of caspases. These results indicate a pivotal role for A20 in the survival of HTLV-I-infected cells and implicate A20 as a potential therapeutic target in ATL.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26437781</pmid><doi>10.1038/leu.2015.267</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-6924
ispartof Leukemia, 2016-03, Vol.30 (3), p.716-727
issn 0887-6924
1476-5551
language eng
recordid cdi_proquest_miscellaneous_1773832477
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 13/2
13/95
38/109
38/89
631/67/395
631/80/82/23
631/80/86
64/60
82/80
Adult
Animal models
Animals
Cancer Research
Care and treatment
Caspase 3 - genetics
Caspase 3 - metabolism
Caspase 7 - genetics
Caspase 7 - metabolism
Caspase 8 - genetics
Caspase 8 - metabolism
Caspase-8
Cell activation
Cell Death
Cell Line
Cell lineage
Cellular proteins
Critical Care Medicine
Depletion
Development and progression
DNA-Binding Proteins - antagonists & inhibitors
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Domains
FADD protein
Fas-Associated Death Domain Protein - genetics
Fas-Associated Death Domain Protein - metabolism
Female
Gene Expression Regulation, Leukemic
Genetic aspects
Genetic Vectors
Health aspects
HEK293 Cells
Hematology
Host-Pathogen Interactions
HTLV infections
Human T-lymphotropic virus 1
Human T-lymphotropic virus 1 - genetics
Human T-lymphotropic virus 1 - pathogenicity
Humans
Intensive
Internal Medicine
Intracellular Signaling Peptides and Proteins - antagonists & inhibitors
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Lentivirus - genetics
Leukemia
Leukemia-Lymphoma, Adult T-Cell - genetics
Leukemia-Lymphoma, Adult T-Cell - metabolism
Leukemia-Lymphoma, Adult T-Cell - pathology
Leukemia-Lymphoma, Adult T-Cell - virology
Lymphocytes B
Lymphocytes T
Lymphoma
Medicine
Medicine & Public Health
Methods
Mice
Mice, Inbred NOD
Molecular targeted therapy
Mutation
Neoplasm Transplantation
Nuclear Proteins - antagonists & inhibitors
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Oncology
original-article
Retroviridae
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Signal Transduction
Survival
Therapeutic targets
Tumor Burden
Tumor Necrosis Factor alpha-Induced Protein 3
Tumorigenicity
Ubiquitin
Ubiquitin-proteasome system
Viruses
Xenografts
Xenotransplantation
Zinc finger proteins
title A20 targets caspase-8 and FADD to protect HTLV-I-infected cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A41%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A20%20targets%20caspase-8%20and%20FADD%20to%20protect%20HTLV-I-infected%20cells&rft.jtitle=Leukemia&rft.au=Saitoh,%20Y&rft.date=2016-03-01&rft.volume=30&rft.issue=3&rft.spage=716&rft.epage=727&rft.pages=716-727&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/leu.2015.267&rft_dat=%3Cgale_proqu%3EA447637125%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1769607209&rft_id=info:pmid/26437781&rft_galeid=A447637125&rfr_iscdi=true