Robust Face Sketch Style Synthesis
Heterogeneous image conversion is a critical issue in many computer vision tasks, among which example-based face sketch style synthesis provides a convenient way to make artistic effects for photos. However, existing face sketch style synthesis methods generate stylistic sketches depending on many p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2016-01, Vol.25 (1), p.220-232 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 232 |
---|---|
container_issue | 1 |
container_start_page | 220 |
container_title | IEEE transactions on image processing |
container_volume | 25 |
creator | Zhang, Shengchuan Gao, Xinbo Wang, Nannan Li, Jie |
description | Heterogeneous image conversion is a critical issue in many computer vision tasks, among which example-based face sketch style synthesis provides a convenient way to make artistic effects for photos. However, existing face sketch style synthesis methods generate stylistic sketches depending on many photo-sketch pairs. This requirement limits the generalization ability of these methods to produce arbitrarily stylistic sketches. To handle such a drawback, we propose a robust face sketch style synthesis method, which can convert photos to arbitrarily stylistic sketches based on only one corresponding template sketch. In the proposed method, a sparse representation-based greedy search strategy is first applied to estimate an initial sketch. Then, multi-scale features and Euclidean distance are employed to select candidate image patches from the initial estimated sketch and the template sketch. In order to further refine the obtained candidate image patches, a multi-feature-based optimization model is introduced. Finally, by assembling the refined candidate image patches, the completed face sketch is obtained. To further enhance the quality of synthesized sketches, a cascaded regression strategy is adopted. Compared with the state-of-the-art face sketch synthesis methods, experimental results on several commonly used face sketch databases and celebrity photos demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1109/TIP.2015.2501755 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1772833273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7331298</ieee_id><sourcerecordid>1772833273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2f2fb6a3adff11f3ae1ba746a43fbc03a2dc810d6f8575563af4d284c2de8f103</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRbK3eBUGKJy-JO_uRzR6lWC0UFFvPy2YzS6NpU7PJof-9W1p7mhnmvTfDj5BboCkA1U_L2UfKKMiUSQpKyjMyBC0goVSw89hTqRIFQg_IVQjflIKQkF2SAcuklhr0kDx8NkUfuvHUOhwvfrBzq_Gi29Vx2G26FYYqXJMLb-uAN8c6Il_Tl-XkLZm_v84mz_PEcdBdwjzzRWa5Lb0H8NwiFFaJzAruC0e5ZaXLgZaZz2V8NePWi5LlwrEScw-Uj8jjIXfbNr89hs6sq-Cwru0Gmz4YUIrlnDPFo5QepK5tQmjRm21brW27M0DNnoyJZMyejDmSiZb7Y3pfrLE8Gf5RRMHdQVAh4mkdjwHTOf8DgMhl8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772833273</pqid></control><display><type>article</type><title>Robust Face Sketch Style Synthesis</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Shengchuan ; Gao, Xinbo ; Wang, Nannan ; Li, Jie</creator><creatorcontrib>Zhang, Shengchuan ; Gao, Xinbo ; Wang, Nannan ; Li, Jie</creatorcontrib><description>Heterogeneous image conversion is a critical issue in many computer vision tasks, among which example-based face sketch style synthesis provides a convenient way to make artistic effects for photos. However, existing face sketch style synthesis methods generate stylistic sketches depending on many photo-sketch pairs. This requirement limits the generalization ability of these methods to produce arbitrarily stylistic sketches. To handle such a drawback, we propose a robust face sketch style synthesis method, which can convert photos to arbitrarily stylistic sketches based on only one corresponding template sketch. In the proposed method, a sparse representation-based greedy search strategy is first applied to estimate an initial sketch. Then, multi-scale features and Euclidean distance are employed to select candidate image patches from the initial estimated sketch and the template sketch. In order to further refine the obtained candidate image patches, a multi-feature-based optimization model is introduced. Finally, by assembling the refined candidate image patches, the completed face sketch is obtained. To further enhance the quality of synthesized sketches, a cascaded regression strategy is adopted. Compared with the state-of-the-art face sketch synthesis methods, experimental results on several commonly used face sketch databases and celebrity photos demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2015.2501755</identifier><identifier>PMID: 26595919</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>cascaded regression ; Computer Graphics ; Databases, Factual ; Dictionaries ; example-based stylization ; Face - anatomy & histology ; Face recognition ; face sketch synthesis ; Heterogeneous image conversion ; Hidden Markov models ; Humans ; Image Processing, Computer-Assisted - methods ; multiscale feature ; Optimization ; Photography ; sparse representation ; Training</subject><ispartof>IEEE transactions on image processing, 2016-01, Vol.25 (1), p.220-232</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2f2fb6a3adff11f3ae1ba746a43fbc03a2dc810d6f8575563af4d284c2de8f103</citedby><cites>FETCH-LOGICAL-c319t-2f2fb6a3adff11f3ae1ba746a43fbc03a2dc810d6f8575563af4d284c2de8f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7331298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7331298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26595919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shengchuan</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><title>Robust Face Sketch Style Synthesis</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Heterogeneous image conversion is a critical issue in many computer vision tasks, among which example-based face sketch style synthesis provides a convenient way to make artistic effects for photos. However, existing face sketch style synthesis methods generate stylistic sketches depending on many photo-sketch pairs. This requirement limits the generalization ability of these methods to produce arbitrarily stylistic sketches. To handle such a drawback, we propose a robust face sketch style synthesis method, which can convert photos to arbitrarily stylistic sketches based on only one corresponding template sketch. In the proposed method, a sparse representation-based greedy search strategy is first applied to estimate an initial sketch. Then, multi-scale features and Euclidean distance are employed to select candidate image patches from the initial estimated sketch and the template sketch. In order to further refine the obtained candidate image patches, a multi-feature-based optimization model is introduced. Finally, by assembling the refined candidate image patches, the completed face sketch is obtained. To further enhance the quality of synthesized sketches, a cascaded regression strategy is adopted. Compared with the state-of-the-art face sketch synthesis methods, experimental results on several commonly used face sketch databases and celebrity photos demonstrate the effectiveness of the proposed method.</description><subject>cascaded regression</subject><subject>Computer Graphics</subject><subject>Databases, Factual</subject><subject>Dictionaries</subject><subject>example-based stylization</subject><subject>Face - anatomy & histology</subject><subject>Face recognition</subject><subject>face sketch synthesis</subject><subject>Heterogeneous image conversion</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>multiscale feature</subject><subject>Optimization</subject><subject>Photography</subject><subject>sparse representation</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kM1Lw0AQxRdRbK3eBUGKJy-JO_uRzR6lWC0UFFvPy2YzS6NpU7PJof-9W1p7mhnmvTfDj5BboCkA1U_L2UfKKMiUSQpKyjMyBC0goVSw89hTqRIFQg_IVQjflIKQkF2SAcuklhr0kDx8NkUfuvHUOhwvfrBzq_Gi29Vx2G26FYYqXJMLb-uAN8c6Il_Tl-XkLZm_v84mz_PEcdBdwjzzRWa5Lb0H8NwiFFaJzAruC0e5ZaXLgZaZz2V8NePWi5LlwrEScw-Uj8jjIXfbNr89hs6sq-Cwru0Gmz4YUIrlnDPFo5QepK5tQmjRm21brW27M0DNnoyJZMyejDmSiZb7Y3pfrLE8Gf5RRMHdQVAh4mkdjwHTOf8DgMhl8A</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Zhang, Shengchuan</creator><creator>Gao, Xinbo</creator><creator>Wang, Nannan</creator><creator>Li, Jie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201601</creationdate><title>Robust Face Sketch Style Synthesis</title><author>Zhang, Shengchuan ; Gao, Xinbo ; Wang, Nannan ; Li, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2f2fb6a3adff11f3ae1ba746a43fbc03a2dc810d6f8575563af4d284c2de8f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>cascaded regression</topic><topic>Computer Graphics</topic><topic>Databases, Factual</topic><topic>Dictionaries</topic><topic>example-based stylization</topic><topic>Face - anatomy & histology</topic><topic>Face recognition</topic><topic>face sketch synthesis</topic><topic>Heterogeneous image conversion</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>multiscale feature</topic><topic>Optimization</topic><topic>Photography</topic><topic>sparse representation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shengchuan</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Shengchuan</au><au>Gao, Xinbo</au><au>Wang, Nannan</au><au>Li, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Face Sketch Style Synthesis</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2016-01</date><risdate>2016</risdate><volume>25</volume><issue>1</issue><spage>220</spage><epage>232</epage><pages>220-232</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Heterogeneous image conversion is a critical issue in many computer vision tasks, among which example-based face sketch style synthesis provides a convenient way to make artistic effects for photos. However, existing face sketch style synthesis methods generate stylistic sketches depending on many photo-sketch pairs. This requirement limits the generalization ability of these methods to produce arbitrarily stylistic sketches. To handle such a drawback, we propose a robust face sketch style synthesis method, which can convert photos to arbitrarily stylistic sketches based on only one corresponding template sketch. In the proposed method, a sparse representation-based greedy search strategy is first applied to estimate an initial sketch. Then, multi-scale features and Euclidean distance are employed to select candidate image patches from the initial estimated sketch and the template sketch. In order to further refine the obtained candidate image patches, a multi-feature-based optimization model is introduced. Finally, by assembling the refined candidate image patches, the completed face sketch is obtained. To further enhance the quality of synthesized sketches, a cascaded regression strategy is adopted. Compared with the state-of-the-art face sketch synthesis methods, experimental results on several commonly used face sketch databases and celebrity photos demonstrate the effectiveness of the proposed method.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26595919</pmid><doi>10.1109/TIP.2015.2501755</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2016-01, Vol.25 (1), p.220-232 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_1772833273 |
source | IEEE Electronic Library (IEL) |
subjects | cascaded regression Computer Graphics Databases, Factual Dictionaries example-based stylization Face - anatomy & histology Face recognition face sketch synthesis Heterogeneous image conversion Hidden Markov models Humans Image Processing, Computer-Assisted - methods multiscale feature Optimization Photography sparse representation Training |
title | Robust Face Sketch Style Synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Face%20Sketch%20Style%20Synthesis&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhang,%20Shengchuan&rft.date=2016-01&rft.volume=25&rft.issue=1&rft.spage=220&rft.epage=232&rft.pages=220-232&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2015.2501755&rft_dat=%3Cproquest_RIE%3E1772833273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772833273&rft_id=info:pmid/26595919&rft_ieee_id=7331298&rfr_iscdi=true |