Robust Face Sketch Style Synthesis

Heterogeneous image conversion is a critical issue in many computer vision tasks, among which example-based face sketch style synthesis provides a convenient way to make artistic effects for photos. However, existing face sketch style synthesis methods generate stylistic sketches depending on many p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2016-01, Vol.25 (1), p.220-232
Hauptverfasser: Zhang, Shengchuan, Gao, Xinbo, Wang, Nannan, Li, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue 1
container_start_page 220
container_title IEEE transactions on image processing
container_volume 25
creator Zhang, Shengchuan
Gao, Xinbo
Wang, Nannan
Li, Jie
description Heterogeneous image conversion is a critical issue in many computer vision tasks, among which example-based face sketch style synthesis provides a convenient way to make artistic effects for photos. However, existing face sketch style synthesis methods generate stylistic sketches depending on many photo-sketch pairs. This requirement limits the generalization ability of these methods to produce arbitrarily stylistic sketches. To handle such a drawback, we propose a robust face sketch style synthesis method, which can convert photos to arbitrarily stylistic sketches based on only one corresponding template sketch. In the proposed method, a sparse representation-based greedy search strategy is first applied to estimate an initial sketch. Then, multi-scale features and Euclidean distance are employed to select candidate image patches from the initial estimated sketch and the template sketch. In order to further refine the obtained candidate image patches, a multi-feature-based optimization model is introduced. Finally, by assembling the refined candidate image patches, the completed face sketch is obtained. To further enhance the quality of synthesized sketches, a cascaded regression strategy is adopted. Compared with the state-of-the-art face sketch synthesis methods, experimental results on several commonly used face sketch databases and celebrity photos demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1109/TIP.2015.2501755
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1772833273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7331298</ieee_id><sourcerecordid>1772833273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2f2fb6a3adff11f3ae1ba746a43fbc03a2dc810d6f8575563af4d284c2de8f103</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRbK3eBUGKJy-JO_uRzR6lWC0UFFvPy2YzS6NpU7PJof-9W1p7mhnmvTfDj5BboCkA1U_L2UfKKMiUSQpKyjMyBC0goVSw89hTqRIFQg_IVQjflIKQkF2SAcuklhr0kDx8NkUfuvHUOhwvfrBzq_Gi29Vx2G26FYYqXJMLb-uAN8c6Il_Tl-XkLZm_v84mz_PEcdBdwjzzRWa5Lb0H8NwiFFaJzAruC0e5ZaXLgZaZz2V8NePWi5LlwrEScw-Uj8jjIXfbNr89hs6sq-Cwru0Gmz4YUIrlnDPFo5QepK5tQmjRm21brW27M0DNnoyJZMyejDmSiZb7Y3pfrLE8Gf5RRMHdQVAh4mkdjwHTOf8DgMhl8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772833273</pqid></control><display><type>article</type><title>Robust Face Sketch Style Synthesis</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Shengchuan ; Gao, Xinbo ; Wang, Nannan ; Li, Jie</creator><creatorcontrib>Zhang, Shengchuan ; Gao, Xinbo ; Wang, Nannan ; Li, Jie</creatorcontrib><description>Heterogeneous image conversion is a critical issue in many computer vision tasks, among which example-based face sketch style synthesis provides a convenient way to make artistic effects for photos. However, existing face sketch style synthesis methods generate stylistic sketches depending on many photo-sketch pairs. This requirement limits the generalization ability of these methods to produce arbitrarily stylistic sketches. To handle such a drawback, we propose a robust face sketch style synthesis method, which can convert photos to arbitrarily stylistic sketches based on only one corresponding template sketch. In the proposed method, a sparse representation-based greedy search strategy is first applied to estimate an initial sketch. Then, multi-scale features and Euclidean distance are employed to select candidate image patches from the initial estimated sketch and the template sketch. In order to further refine the obtained candidate image patches, a multi-feature-based optimization model is introduced. Finally, by assembling the refined candidate image patches, the completed face sketch is obtained. To further enhance the quality of synthesized sketches, a cascaded regression strategy is adopted. Compared with the state-of-the-art face sketch synthesis methods, experimental results on several commonly used face sketch databases and celebrity photos demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2015.2501755</identifier><identifier>PMID: 26595919</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>cascaded regression ; Computer Graphics ; Databases, Factual ; Dictionaries ; example-based stylization ; Face - anatomy &amp; histology ; Face recognition ; face sketch synthesis ; Heterogeneous image conversion ; Hidden Markov models ; Humans ; Image Processing, Computer-Assisted - methods ; multiscale feature ; Optimization ; Photography ; sparse representation ; Training</subject><ispartof>IEEE transactions on image processing, 2016-01, Vol.25 (1), p.220-232</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2f2fb6a3adff11f3ae1ba746a43fbc03a2dc810d6f8575563af4d284c2de8f103</citedby><cites>FETCH-LOGICAL-c319t-2f2fb6a3adff11f3ae1ba746a43fbc03a2dc810d6f8575563af4d284c2de8f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7331298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7331298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26595919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shengchuan</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><title>Robust Face Sketch Style Synthesis</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Heterogeneous image conversion is a critical issue in many computer vision tasks, among which example-based face sketch style synthesis provides a convenient way to make artistic effects for photos. However, existing face sketch style synthesis methods generate stylistic sketches depending on many photo-sketch pairs. This requirement limits the generalization ability of these methods to produce arbitrarily stylistic sketches. To handle such a drawback, we propose a robust face sketch style synthesis method, which can convert photos to arbitrarily stylistic sketches based on only one corresponding template sketch. In the proposed method, a sparse representation-based greedy search strategy is first applied to estimate an initial sketch. Then, multi-scale features and Euclidean distance are employed to select candidate image patches from the initial estimated sketch and the template sketch. In order to further refine the obtained candidate image patches, a multi-feature-based optimization model is introduced. Finally, by assembling the refined candidate image patches, the completed face sketch is obtained. To further enhance the quality of synthesized sketches, a cascaded regression strategy is adopted. Compared with the state-of-the-art face sketch synthesis methods, experimental results on several commonly used face sketch databases and celebrity photos demonstrate the effectiveness of the proposed method.</description><subject>cascaded regression</subject><subject>Computer Graphics</subject><subject>Databases, Factual</subject><subject>Dictionaries</subject><subject>example-based stylization</subject><subject>Face - anatomy &amp; histology</subject><subject>Face recognition</subject><subject>face sketch synthesis</subject><subject>Heterogeneous image conversion</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>multiscale feature</subject><subject>Optimization</subject><subject>Photography</subject><subject>sparse representation</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kM1Lw0AQxRdRbK3eBUGKJy-JO_uRzR6lWC0UFFvPy2YzS6NpU7PJof-9W1p7mhnmvTfDj5BboCkA1U_L2UfKKMiUSQpKyjMyBC0goVSw89hTqRIFQg_IVQjflIKQkF2SAcuklhr0kDx8NkUfuvHUOhwvfrBzq_Gi29Vx2G26FYYqXJMLb-uAN8c6Il_Tl-XkLZm_v84mz_PEcdBdwjzzRWa5Lb0H8NwiFFaJzAruC0e5ZaXLgZaZz2V8NePWi5LlwrEScw-Uj8jjIXfbNr89hs6sq-Cwru0Gmz4YUIrlnDPFo5QepK5tQmjRm21brW27M0DNnoyJZMyejDmSiZb7Y3pfrLE8Gf5RRMHdQVAh4mkdjwHTOf8DgMhl8A</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Zhang, Shengchuan</creator><creator>Gao, Xinbo</creator><creator>Wang, Nannan</creator><creator>Li, Jie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201601</creationdate><title>Robust Face Sketch Style Synthesis</title><author>Zhang, Shengchuan ; Gao, Xinbo ; Wang, Nannan ; Li, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2f2fb6a3adff11f3ae1ba746a43fbc03a2dc810d6f8575563af4d284c2de8f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>cascaded regression</topic><topic>Computer Graphics</topic><topic>Databases, Factual</topic><topic>Dictionaries</topic><topic>example-based stylization</topic><topic>Face - anatomy &amp; histology</topic><topic>Face recognition</topic><topic>face sketch synthesis</topic><topic>Heterogeneous image conversion</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>multiscale feature</topic><topic>Optimization</topic><topic>Photography</topic><topic>sparse representation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shengchuan</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Shengchuan</au><au>Gao, Xinbo</au><au>Wang, Nannan</au><au>Li, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Face Sketch Style Synthesis</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2016-01</date><risdate>2016</risdate><volume>25</volume><issue>1</issue><spage>220</spage><epage>232</epage><pages>220-232</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Heterogeneous image conversion is a critical issue in many computer vision tasks, among which example-based face sketch style synthesis provides a convenient way to make artistic effects for photos. However, existing face sketch style synthesis methods generate stylistic sketches depending on many photo-sketch pairs. This requirement limits the generalization ability of these methods to produce arbitrarily stylistic sketches. To handle such a drawback, we propose a robust face sketch style synthesis method, which can convert photos to arbitrarily stylistic sketches based on only one corresponding template sketch. In the proposed method, a sparse representation-based greedy search strategy is first applied to estimate an initial sketch. Then, multi-scale features and Euclidean distance are employed to select candidate image patches from the initial estimated sketch and the template sketch. In order to further refine the obtained candidate image patches, a multi-feature-based optimization model is introduced. Finally, by assembling the refined candidate image patches, the completed face sketch is obtained. To further enhance the quality of synthesized sketches, a cascaded regression strategy is adopted. Compared with the state-of-the-art face sketch synthesis methods, experimental results on several commonly used face sketch databases and celebrity photos demonstrate the effectiveness of the proposed method.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26595919</pmid><doi>10.1109/TIP.2015.2501755</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2016-01, Vol.25 (1), p.220-232
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1772833273
source IEEE Electronic Library (IEL)
subjects cascaded regression
Computer Graphics
Databases, Factual
Dictionaries
example-based stylization
Face - anatomy & histology
Face recognition
face sketch synthesis
Heterogeneous image conversion
Hidden Markov models
Humans
Image Processing, Computer-Assisted - methods
multiscale feature
Optimization
Photography
sparse representation
Training
title Robust Face Sketch Style Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Face%20Sketch%20Style%20Synthesis&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhang,%20Shengchuan&rft.date=2016-01&rft.volume=25&rft.issue=1&rft.spage=220&rft.epage=232&rft.pages=220-232&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2015.2501755&rft_dat=%3Cproquest_RIE%3E1772833273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772833273&rft_id=info:pmid/26595919&rft_ieee_id=7331298&rfr_iscdi=true