Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures
Protein structures which form fibrils have recently been shown to absorb light at energies in the near UV range and to exhibit a structure-specific fluorescence in the visible range even in the absence of aromatic amino acids. However, the molecular origin of this phenomenon has so far remained elus...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2016-03, Vol.138 (9), p.3046-3057 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3057 |
---|---|
container_issue | 9 |
container_start_page | 3046 |
container_title | Journal of the American Chemical Society |
container_volume | 138 |
creator | Pinotsi, Dorothea Grisanti, Luca Mahou, Pierre Gebauer, Ralph Kaminski, Clemens F Hassanali, Ali Kaminski Schierle, Gabriele S |
description | Protein structures which form fibrils have recently been shown to absorb light at energies in the near UV range and to exhibit a structure-specific fluorescence in the visible range even in the absence of aromatic amino acids. However, the molecular origin of this phenomenon has so far remained elusive. Here, we combine ab initio molecular dynamics simulations and fluorescence spectroscopy to demonstrate that these intrinsically fluorescent protein fibrils are permissive to proton transfer across hydrogen bonds which can lower electron excitation energies and thereby decrease the likelihood of energy dissipation associated with conventional hydrogen bonds. The importance of proton transfer on the intrinsic fluorescence observed in protein fibrils is signified by large reductions in the fluorescence intensity upon either fully protonating, or deprotonating, the fibrils at pH = 0 or 14, respectively. Thus, our results point to the existence of a structure-specific fluorophore that does not require the presence of aromatic residues or multiple bond conjugation that characterize conventional fluorescent systems. The phenomenon may have a wide range of implications in biological systems and in the design of self-assembled functional materials. |
doi_str_mv | 10.1021/jacs.5b11012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1772147519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1772147519</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-ecd87013db03b257bc67c1557ad4b329be47acdf70ce6ded568b8572a76e6a43</originalsourceid><addsrcrecordid>eNptkL1PwzAQxS0EoqWwMSOPDKTYTmynI1SUIlUC0Y5IkT8ukCq1i50M_e9J1FIWptPp3vvd3UPompIxJYzer5WJY64pJZSdoCHljCScMnGKhoQQlshcpAN0EeO6azOW03M0YCJnmZT5EH28Bd94h1dBuVhCwMpZvGxCa5o2QLLcgqnKyuBZ3foA0YAzgCuH5zsb_Cc4_OidTd4r84V7EnSjozteorNS1RGuDnWEVrOn1XSeLF6fX6YPi0SlgjUJGJtLQlOrSaoZl9oIaSjnUtlMp2yiIZPK2FISA8KC5SLXOZdMSQFCZekI3e6x2-C_W4hNsam6S-taOfBtLKiUjGaS00knvdtLTfAxBiiLbag2KuwKSoo-zqKPszjE2clvDuRWb8Aexb_5_a3uXWvfBtf9-T_rBzcbfxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772147519</pqid></control><display><type>article</type><title>Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Pinotsi, Dorothea ; Grisanti, Luca ; Mahou, Pierre ; Gebauer, Ralph ; Kaminski, Clemens F ; Hassanali, Ali ; Kaminski Schierle, Gabriele S</creator><creatorcontrib>Pinotsi, Dorothea ; Grisanti, Luca ; Mahou, Pierre ; Gebauer, Ralph ; Kaminski, Clemens F ; Hassanali, Ali ; Kaminski Schierle, Gabriele S</creatorcontrib><description>Protein structures which form fibrils have recently been shown to absorb light at energies in the near UV range and to exhibit a structure-specific fluorescence in the visible range even in the absence of aromatic amino acids. However, the molecular origin of this phenomenon has so far remained elusive. Here, we combine ab initio molecular dynamics simulations and fluorescence spectroscopy to demonstrate that these intrinsically fluorescent protein fibrils are permissive to proton transfer across hydrogen bonds which can lower electron excitation energies and thereby decrease the likelihood of energy dissipation associated with conventional hydrogen bonds. The importance of proton transfer on the intrinsic fluorescence observed in protein fibrils is signified by large reductions in the fluorescence intensity upon either fully protonating, or deprotonating, the fibrils at pH = 0 or 14, respectively. Thus, our results point to the existence of a structure-specific fluorophore that does not require the presence of aromatic residues or multiple bond conjugation that characterize conventional fluorescent systems. The phenomenon may have a wide range of implications in biological systems and in the design of self-assembled functional materials.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b11012</identifier><identifier>PMID: 26824778</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amyloid - chemistry ; Amyloid - metabolism ; Amyloid beta-Peptides - chemistry ; Amyloid beta-Peptides - metabolism ; Hydrogen Bonding ; Microscopy, Atomic Force ; Microscopy, Fluorescence ; Molecular Dynamics Simulation ; Peptide Fragments - chemistry ; Peptide Fragments - metabolism ; Protein Structure, Secondary ; Proteins - chemistry ; Proteins - metabolism ; Protons ; Spectrometry, Fluorescence ; Structure-Activity Relationship</subject><ispartof>Journal of the American Chemical Society, 2016-03, Vol.138 (9), p.3046-3057</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-ecd87013db03b257bc67c1557ad4b329be47acdf70ce6ded568b8572a76e6a43</citedby><cites>FETCH-LOGICAL-a362t-ecd87013db03b257bc67c1557ad4b329be47acdf70ce6ded568b8572a76e6a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b11012$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b11012$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26824778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinotsi, Dorothea</creatorcontrib><creatorcontrib>Grisanti, Luca</creatorcontrib><creatorcontrib>Mahou, Pierre</creatorcontrib><creatorcontrib>Gebauer, Ralph</creatorcontrib><creatorcontrib>Kaminski, Clemens F</creatorcontrib><creatorcontrib>Hassanali, Ali</creatorcontrib><creatorcontrib>Kaminski Schierle, Gabriele S</creatorcontrib><title>Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Protein structures which form fibrils have recently been shown to absorb light at energies in the near UV range and to exhibit a structure-specific fluorescence in the visible range even in the absence of aromatic amino acids. However, the molecular origin of this phenomenon has so far remained elusive. Here, we combine ab initio molecular dynamics simulations and fluorescence spectroscopy to demonstrate that these intrinsically fluorescent protein fibrils are permissive to proton transfer across hydrogen bonds which can lower electron excitation energies and thereby decrease the likelihood of energy dissipation associated with conventional hydrogen bonds. The importance of proton transfer on the intrinsic fluorescence observed in protein fibrils is signified by large reductions in the fluorescence intensity upon either fully protonating, or deprotonating, the fibrils at pH = 0 or 14, respectively. Thus, our results point to the existence of a structure-specific fluorophore that does not require the presence of aromatic residues or multiple bond conjugation that characterize conventional fluorescent systems. The phenomenon may have a wide range of implications in biological systems and in the design of self-assembled functional materials.</description><subject>Amyloid - chemistry</subject><subject>Amyloid - metabolism</subject><subject>Amyloid beta-Peptides - chemistry</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Hydrogen Bonding</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - metabolism</subject><subject>Protein Structure, Secondary</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Protons</subject><subject>Spectrometry, Fluorescence</subject><subject>Structure-Activity Relationship</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkL1PwzAQxS0EoqWwMSOPDKTYTmynI1SUIlUC0Y5IkT8ukCq1i50M_e9J1FIWptPp3vvd3UPompIxJYzer5WJY64pJZSdoCHljCScMnGKhoQQlshcpAN0EeO6azOW03M0YCJnmZT5EH28Bd94h1dBuVhCwMpZvGxCa5o2QLLcgqnKyuBZ3foA0YAzgCuH5zsb_Cc4_OidTd4r84V7EnSjozteorNS1RGuDnWEVrOn1XSeLF6fX6YPi0SlgjUJGJtLQlOrSaoZl9oIaSjnUtlMp2yiIZPK2FISA8KC5SLXOZdMSQFCZekI3e6x2-C_W4hNsam6S-taOfBtLKiUjGaS00knvdtLTfAxBiiLbag2KuwKSoo-zqKPszjE2clvDuRWb8Aexb_5_a3uXWvfBtf9-T_rBzcbfxE</recordid><startdate>20160309</startdate><enddate>20160309</enddate><creator>Pinotsi, Dorothea</creator><creator>Grisanti, Luca</creator><creator>Mahou, Pierre</creator><creator>Gebauer, Ralph</creator><creator>Kaminski, Clemens F</creator><creator>Hassanali, Ali</creator><creator>Kaminski Schierle, Gabriele S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160309</creationdate><title>Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures</title><author>Pinotsi, Dorothea ; Grisanti, Luca ; Mahou, Pierre ; Gebauer, Ralph ; Kaminski, Clemens F ; Hassanali, Ali ; Kaminski Schierle, Gabriele S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-ecd87013db03b257bc67c1557ad4b329be47acdf70ce6ded568b8572a76e6a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amyloid - chemistry</topic><topic>Amyloid - metabolism</topic><topic>Amyloid beta-Peptides - chemistry</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Hydrogen Bonding</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - metabolism</topic><topic>Protein Structure, Secondary</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Protons</topic><topic>Spectrometry, Fluorescence</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinotsi, Dorothea</creatorcontrib><creatorcontrib>Grisanti, Luca</creatorcontrib><creatorcontrib>Mahou, Pierre</creatorcontrib><creatorcontrib>Gebauer, Ralph</creatorcontrib><creatorcontrib>Kaminski, Clemens F</creatorcontrib><creatorcontrib>Hassanali, Ali</creatorcontrib><creatorcontrib>Kaminski Schierle, Gabriele S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinotsi, Dorothea</au><au>Grisanti, Luca</au><au>Mahou, Pierre</au><au>Gebauer, Ralph</au><au>Kaminski, Clemens F</au><au>Hassanali, Ali</au><au>Kaminski Schierle, Gabriele S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-03-09</date><risdate>2016</risdate><volume>138</volume><issue>9</issue><spage>3046</spage><epage>3057</epage><pages>3046-3057</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Protein structures which form fibrils have recently been shown to absorb light at energies in the near UV range and to exhibit a structure-specific fluorescence in the visible range even in the absence of aromatic amino acids. However, the molecular origin of this phenomenon has so far remained elusive. Here, we combine ab initio molecular dynamics simulations and fluorescence spectroscopy to demonstrate that these intrinsically fluorescent protein fibrils are permissive to proton transfer across hydrogen bonds which can lower electron excitation energies and thereby decrease the likelihood of energy dissipation associated with conventional hydrogen bonds. The importance of proton transfer on the intrinsic fluorescence observed in protein fibrils is signified by large reductions in the fluorescence intensity upon either fully protonating, or deprotonating, the fibrils at pH = 0 or 14, respectively. Thus, our results point to the existence of a structure-specific fluorophore that does not require the presence of aromatic residues or multiple bond conjugation that characterize conventional fluorescent systems. The phenomenon may have a wide range of implications in biological systems and in the design of self-assembled functional materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26824778</pmid><doi>10.1021/jacs.5b11012</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2016-03, Vol.138 (9), p.3046-3057 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1772147519 |
source | MEDLINE; American Chemical Society Journals |
subjects | Amyloid - chemistry Amyloid - metabolism Amyloid beta-Peptides - chemistry Amyloid beta-Peptides - metabolism Hydrogen Bonding Microscopy, Atomic Force Microscopy, Fluorescence Molecular Dynamics Simulation Peptide Fragments - chemistry Peptide Fragments - metabolism Protein Structure, Secondary Proteins - chemistry Proteins - metabolism Protons Spectrometry, Fluorescence Structure-Activity Relationship |
title | Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20Transfer%20and%20Structure-Specific%20Fluorescence%20in%20Hydrogen%20Bond-Rich%20Protein%20Structures&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Pinotsi,%20Dorothea&rft.date=2016-03-09&rft.volume=138&rft.issue=9&rft.spage=3046&rft.epage=3057&rft.pages=3046-3057&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b11012&rft_dat=%3Cproquest_cross%3E1772147519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772147519&rft_id=info:pmid/26824778&rfr_iscdi=true |