Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures

Protein structures which form fibrils have recently been shown to absorb light at energies in the near UV range and to exhibit a structure-specific fluorescence in the visible range even in the absence of aromatic amino acids. However, the molecular origin of this phenomenon has so far remained elus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2016-03, Vol.138 (9), p.3046-3057
Hauptverfasser: Pinotsi, Dorothea, Grisanti, Luca, Mahou, Pierre, Gebauer, Ralph, Kaminski, Clemens F, Hassanali, Ali, Kaminski Schierle, Gabriele S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3057
container_issue 9
container_start_page 3046
container_title Journal of the American Chemical Society
container_volume 138
creator Pinotsi, Dorothea
Grisanti, Luca
Mahou, Pierre
Gebauer, Ralph
Kaminski, Clemens F
Hassanali, Ali
Kaminski Schierle, Gabriele S
description Protein structures which form fibrils have recently been shown to absorb light at energies in the near UV range and to exhibit a structure-specific fluorescence in the visible range even in the absence of aromatic amino acids. However, the molecular origin of this phenomenon has so far remained elusive. Here, we combine ab initio molecular dynamics simulations and fluorescence spectroscopy to demonstrate that these intrinsically fluorescent protein fibrils are permissive to proton transfer across hydrogen bonds which can lower electron excitation energies and thereby decrease the likelihood of energy dissipation associated with conventional hydrogen bonds. The importance of proton transfer on the intrinsic fluorescence observed in protein fibrils is signified by large reductions in the fluorescence intensity upon either fully protonating, or deprotonating, the fibrils at pH = 0 or 14, respectively. Thus, our results point to the existence of a structure-specific fluorophore that does not require the presence of aromatic residues or multiple bond conjugation that characterize conventional fluorescent systems. The phenomenon may have a wide range of implications in biological systems and in the design of self-assembled functional materials.
doi_str_mv 10.1021/jacs.5b11012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1772147519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1772147519</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-ecd87013db03b257bc67c1557ad4b329be47acdf70ce6ded568b8572a76e6a43</originalsourceid><addsrcrecordid>eNptkL1PwzAQxS0EoqWwMSOPDKTYTmynI1SUIlUC0Y5IkT8ukCq1i50M_e9J1FIWptPp3vvd3UPompIxJYzer5WJY64pJZSdoCHljCScMnGKhoQQlshcpAN0EeO6azOW03M0YCJnmZT5EH28Bd94h1dBuVhCwMpZvGxCa5o2QLLcgqnKyuBZ3foA0YAzgCuH5zsb_Cc4_OidTd4r84V7EnSjozteorNS1RGuDnWEVrOn1XSeLF6fX6YPi0SlgjUJGJtLQlOrSaoZl9oIaSjnUtlMp2yiIZPK2FISA8KC5SLXOZdMSQFCZekI3e6x2-C_W4hNsam6S-taOfBtLKiUjGaS00knvdtLTfAxBiiLbag2KuwKSoo-zqKPszjE2clvDuRWb8Aexb_5_a3uXWvfBtf9-T_rBzcbfxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772147519</pqid></control><display><type>article</type><title>Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Pinotsi, Dorothea ; Grisanti, Luca ; Mahou, Pierre ; Gebauer, Ralph ; Kaminski, Clemens F ; Hassanali, Ali ; Kaminski Schierle, Gabriele S</creator><creatorcontrib>Pinotsi, Dorothea ; Grisanti, Luca ; Mahou, Pierre ; Gebauer, Ralph ; Kaminski, Clemens F ; Hassanali, Ali ; Kaminski Schierle, Gabriele S</creatorcontrib><description>Protein structures which form fibrils have recently been shown to absorb light at energies in the near UV range and to exhibit a structure-specific fluorescence in the visible range even in the absence of aromatic amino acids. However, the molecular origin of this phenomenon has so far remained elusive. Here, we combine ab initio molecular dynamics simulations and fluorescence spectroscopy to demonstrate that these intrinsically fluorescent protein fibrils are permissive to proton transfer across hydrogen bonds which can lower electron excitation energies and thereby decrease the likelihood of energy dissipation associated with conventional hydrogen bonds. The importance of proton transfer on the intrinsic fluorescence observed in protein fibrils is signified by large reductions in the fluorescence intensity upon either fully protonating, or deprotonating, the fibrils at pH = 0 or 14, respectively. Thus, our results point to the existence of a structure-specific fluorophore that does not require the presence of aromatic residues or multiple bond conjugation that characterize conventional fluorescent systems. The phenomenon may have a wide range of implications in biological systems and in the design of self-assembled functional materials.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b11012</identifier><identifier>PMID: 26824778</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amyloid - chemistry ; Amyloid - metabolism ; Amyloid beta-Peptides - chemistry ; Amyloid beta-Peptides - metabolism ; Hydrogen Bonding ; Microscopy, Atomic Force ; Microscopy, Fluorescence ; Molecular Dynamics Simulation ; Peptide Fragments - chemistry ; Peptide Fragments - metabolism ; Protein Structure, Secondary ; Proteins - chemistry ; Proteins - metabolism ; Protons ; Spectrometry, Fluorescence ; Structure-Activity Relationship</subject><ispartof>Journal of the American Chemical Society, 2016-03, Vol.138 (9), p.3046-3057</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-ecd87013db03b257bc67c1557ad4b329be47acdf70ce6ded568b8572a76e6a43</citedby><cites>FETCH-LOGICAL-a362t-ecd87013db03b257bc67c1557ad4b329be47acdf70ce6ded568b8572a76e6a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b11012$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b11012$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26824778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinotsi, Dorothea</creatorcontrib><creatorcontrib>Grisanti, Luca</creatorcontrib><creatorcontrib>Mahou, Pierre</creatorcontrib><creatorcontrib>Gebauer, Ralph</creatorcontrib><creatorcontrib>Kaminski, Clemens F</creatorcontrib><creatorcontrib>Hassanali, Ali</creatorcontrib><creatorcontrib>Kaminski Schierle, Gabriele S</creatorcontrib><title>Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Protein structures which form fibrils have recently been shown to absorb light at energies in the near UV range and to exhibit a structure-specific fluorescence in the visible range even in the absence of aromatic amino acids. However, the molecular origin of this phenomenon has so far remained elusive. Here, we combine ab initio molecular dynamics simulations and fluorescence spectroscopy to demonstrate that these intrinsically fluorescent protein fibrils are permissive to proton transfer across hydrogen bonds which can lower electron excitation energies and thereby decrease the likelihood of energy dissipation associated with conventional hydrogen bonds. The importance of proton transfer on the intrinsic fluorescence observed in protein fibrils is signified by large reductions in the fluorescence intensity upon either fully protonating, or deprotonating, the fibrils at pH = 0 or 14, respectively. Thus, our results point to the existence of a structure-specific fluorophore that does not require the presence of aromatic residues or multiple bond conjugation that characterize conventional fluorescent systems. The phenomenon may have a wide range of implications in biological systems and in the design of self-assembled functional materials.</description><subject>Amyloid - chemistry</subject><subject>Amyloid - metabolism</subject><subject>Amyloid beta-Peptides - chemistry</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Hydrogen Bonding</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - metabolism</subject><subject>Protein Structure, Secondary</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Protons</subject><subject>Spectrometry, Fluorescence</subject><subject>Structure-Activity Relationship</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkL1PwzAQxS0EoqWwMSOPDKTYTmynI1SUIlUC0Y5IkT8ukCq1i50M_e9J1FIWptPp3vvd3UPompIxJYzer5WJY64pJZSdoCHljCScMnGKhoQQlshcpAN0EeO6azOW03M0YCJnmZT5EH28Bd94h1dBuVhCwMpZvGxCa5o2QLLcgqnKyuBZ3foA0YAzgCuH5zsb_Cc4_OidTd4r84V7EnSjozteorNS1RGuDnWEVrOn1XSeLF6fX6YPi0SlgjUJGJtLQlOrSaoZl9oIaSjnUtlMp2yiIZPK2FISA8KC5SLXOZdMSQFCZekI3e6x2-C_W4hNsam6S-taOfBtLKiUjGaS00knvdtLTfAxBiiLbag2KuwKSoo-zqKPszjE2clvDuRWb8Aexb_5_a3uXWvfBtf9-T_rBzcbfxE</recordid><startdate>20160309</startdate><enddate>20160309</enddate><creator>Pinotsi, Dorothea</creator><creator>Grisanti, Luca</creator><creator>Mahou, Pierre</creator><creator>Gebauer, Ralph</creator><creator>Kaminski, Clemens F</creator><creator>Hassanali, Ali</creator><creator>Kaminski Schierle, Gabriele S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160309</creationdate><title>Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures</title><author>Pinotsi, Dorothea ; Grisanti, Luca ; Mahou, Pierre ; Gebauer, Ralph ; Kaminski, Clemens F ; Hassanali, Ali ; Kaminski Schierle, Gabriele S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-ecd87013db03b257bc67c1557ad4b329be47acdf70ce6ded568b8572a76e6a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amyloid - chemistry</topic><topic>Amyloid - metabolism</topic><topic>Amyloid beta-Peptides - chemistry</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Hydrogen Bonding</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - metabolism</topic><topic>Protein Structure, Secondary</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Protons</topic><topic>Spectrometry, Fluorescence</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinotsi, Dorothea</creatorcontrib><creatorcontrib>Grisanti, Luca</creatorcontrib><creatorcontrib>Mahou, Pierre</creatorcontrib><creatorcontrib>Gebauer, Ralph</creatorcontrib><creatorcontrib>Kaminski, Clemens F</creatorcontrib><creatorcontrib>Hassanali, Ali</creatorcontrib><creatorcontrib>Kaminski Schierle, Gabriele S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinotsi, Dorothea</au><au>Grisanti, Luca</au><au>Mahou, Pierre</au><au>Gebauer, Ralph</au><au>Kaminski, Clemens F</au><au>Hassanali, Ali</au><au>Kaminski Schierle, Gabriele S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-03-09</date><risdate>2016</risdate><volume>138</volume><issue>9</issue><spage>3046</spage><epage>3057</epage><pages>3046-3057</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Protein structures which form fibrils have recently been shown to absorb light at energies in the near UV range and to exhibit a structure-specific fluorescence in the visible range even in the absence of aromatic amino acids. However, the molecular origin of this phenomenon has so far remained elusive. Here, we combine ab initio molecular dynamics simulations and fluorescence spectroscopy to demonstrate that these intrinsically fluorescent protein fibrils are permissive to proton transfer across hydrogen bonds which can lower electron excitation energies and thereby decrease the likelihood of energy dissipation associated with conventional hydrogen bonds. The importance of proton transfer on the intrinsic fluorescence observed in protein fibrils is signified by large reductions in the fluorescence intensity upon either fully protonating, or deprotonating, the fibrils at pH = 0 or 14, respectively. Thus, our results point to the existence of a structure-specific fluorophore that does not require the presence of aromatic residues or multiple bond conjugation that characterize conventional fluorescent systems. The phenomenon may have a wide range of implications in biological systems and in the design of self-assembled functional materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26824778</pmid><doi>10.1021/jacs.5b11012</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2016-03, Vol.138 (9), p.3046-3057
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1772147519
source MEDLINE; American Chemical Society Journals
subjects Amyloid - chemistry
Amyloid - metabolism
Amyloid beta-Peptides - chemistry
Amyloid beta-Peptides - metabolism
Hydrogen Bonding
Microscopy, Atomic Force
Microscopy, Fluorescence
Molecular Dynamics Simulation
Peptide Fragments - chemistry
Peptide Fragments - metabolism
Protein Structure, Secondary
Proteins - chemistry
Proteins - metabolism
Protons
Spectrometry, Fluorescence
Structure-Activity Relationship
title Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20Transfer%20and%20Structure-Specific%20Fluorescence%20in%20Hydrogen%20Bond-Rich%20Protein%20Structures&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Pinotsi,%20Dorothea&rft.date=2016-03-09&rft.volume=138&rft.issue=9&rft.spage=3046&rft.epage=3057&rft.pages=3046-3057&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b11012&rft_dat=%3Cproquest_cross%3E1772147519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772147519&rft_id=info:pmid/26824778&rfr_iscdi=true