Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study

There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting react...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-03, Vol.144 (9), p.094701-094701
Hauptverfasser: Ulman, Kanchan, Nguyen, Manh-Thuong, Seriani, Nicola, Gebauer, Ralph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 094701
container_issue 9
container_start_page 094701
container_title The Journal of chemical physics
container_volume 144
creator Ulman, Kanchan
Nguyen, Manh-Thuong
Seriani, Nicola
Gebauer, Ralph
description There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski–Krastanov) growth mode with a critical layer thickness of 1–2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.
doi_str_mv 10.1063/1.4942655
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1772147370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121875533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-901e69652337059996217d24e6f71c3dd90b555b9224cd039948489f9fbb49493</originalsourceid><addsrcrecordid>eNp90d9K5DAUBvAgKzqrXvgCS2FvdKGaP03Ss3ci6gqCXuh1SNsEK53JbE47UNiX8kV8JjM74wgKXgXC73wJ5yPkkNETRpU4ZScFFFxJuUUmjJaQawX0G5lQylkOiqpd8h3xiVLKNC92yC5XIDXTdEL-3VnEdmH7Nsyy4DMcore1y7C3vcPlzctzfun4rThajh9vQDVmjZsHbN8mr2xCWVi42NnRRfydnSUxS2DM_DCrl852Wf_oQhxT_tCM-2Tb2w7dwfrcIw-XF_fnf_Kb26vr87ObvBal6HOgzClQkguhqQQAxZlueOGU16wWTQO0klJWwHlRN1QAFGVRggdfVWkxIPbI0Sp3HsPfwWFvpi3WruvszIUBDdOas0Kn9ER_fqBPYYjp42g446zUUgqR1PFK1TEgRufNPLZTG0fDqFlWYphZV5Lsj3XiUE1ds5FvHSTwawWwbvv_RWzMIsT3JDNv_Ff489Ovxe-fyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121875533</pqid></control><display><type>article</type><title>Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ulman, Kanchan ; Nguyen, Manh-Thuong ; Seriani, Nicola ; Gebauer, Ralph</creator><creatorcontrib>Ulman, Kanchan ; Nguyen, Manh-Thuong ; Seriani, Nicola ; Gebauer, Ralph</creatorcontrib><description>There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski–Krastanov) growth mode with a critical layer thickness of 1–2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4942655</identifier><identifier>PMID: 26957170</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Catalysis ; Density functional theory ; Deposition ; First principles ; Gallium oxides ; Hematite ; Organic chemistry ; Thickness ; Water splitting</subject><ispartof>The Journal of chemical physics, 2016-03, Vol.144 (9), p.094701-094701</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-901e69652337059996217d24e6f71c3dd90b555b9224cd039948489f9fbb49493</citedby><cites>FETCH-LOGICAL-c383t-901e69652337059996217d24e6f71c3dd90b555b9224cd039948489f9fbb49493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4942655$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26957170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ulman, Kanchan</creatorcontrib><creatorcontrib>Nguyen, Manh-Thuong</creatorcontrib><creatorcontrib>Seriani, Nicola</creatorcontrib><creatorcontrib>Gebauer, Ralph</creatorcontrib><title>Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski–Krastanov) growth mode with a critical layer thickness of 1–2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.</description><subject>Catalysis</subject><subject>Density functional theory</subject><subject>Deposition</subject><subject>First principles</subject><subject>Gallium oxides</subject><subject>Hematite</subject><subject>Organic chemistry</subject><subject>Thickness</subject><subject>Water splitting</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90d9K5DAUBvAgKzqrXvgCS2FvdKGaP03Ss3ci6gqCXuh1SNsEK53JbE47UNiX8kV8JjM74wgKXgXC73wJ5yPkkNETRpU4ZScFFFxJuUUmjJaQawX0G5lQylkOiqpd8h3xiVLKNC92yC5XIDXTdEL-3VnEdmH7Nsyy4DMcore1y7C3vcPlzctzfun4rThajh9vQDVmjZsHbN8mr2xCWVi42NnRRfydnSUxS2DM_DCrl852Wf_oQhxT_tCM-2Tb2w7dwfrcIw-XF_fnf_Kb26vr87ObvBal6HOgzClQkguhqQQAxZlueOGU16wWTQO0klJWwHlRN1QAFGVRggdfVWkxIPbI0Sp3HsPfwWFvpi3WruvszIUBDdOas0Kn9ER_fqBPYYjp42g446zUUgqR1PFK1TEgRufNPLZTG0fDqFlWYphZV5Lsj3XiUE1ds5FvHSTwawWwbvv_RWzMIsT3JDNv_Ff489Ovxe-fyw</recordid><startdate>20160307</startdate><enddate>20160307</enddate><creator>Ulman, Kanchan</creator><creator>Nguyen, Manh-Thuong</creator><creator>Seriani, Nicola</creator><creator>Gebauer, Ralph</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20160307</creationdate><title>Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study</title><author>Ulman, Kanchan ; Nguyen, Manh-Thuong ; Seriani, Nicola ; Gebauer, Ralph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-901e69652337059996217d24e6f71c3dd90b555b9224cd039948489f9fbb49493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Catalysis</topic><topic>Density functional theory</topic><topic>Deposition</topic><topic>First principles</topic><topic>Gallium oxides</topic><topic>Hematite</topic><topic>Organic chemistry</topic><topic>Thickness</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulman, Kanchan</creatorcontrib><creatorcontrib>Nguyen, Manh-Thuong</creatorcontrib><creatorcontrib>Seriani, Nicola</creatorcontrib><creatorcontrib>Gebauer, Ralph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulman, Kanchan</au><au>Nguyen, Manh-Thuong</au><au>Seriani, Nicola</au><au>Gebauer, Ralph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-03-07</date><risdate>2016</risdate><volume>144</volume><issue>9</issue><spage>094701</spage><epage>094701</epage><pages>094701-094701</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski–Krastanov) growth mode with a critical layer thickness of 1–2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26957170</pmid><doi>10.1063/1.4942655</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2016-03, Vol.144 (9), p.094701-094701
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_1772147370
source AIP Journals Complete; Alma/SFX Local Collection
subjects Catalysis
Density functional theory
Deposition
First principles
Gallium oxides
Hematite
Organic chemistry
Thickness
Water splitting
title Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passivation%20of%20surface%20states%20of%20%CE%B1-Fe2O3(0001)%20surface%20by%20deposition%20of%20Ga2O3%20overlayers:%20A%20density%20functional%20theory%20study&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ulman,%20Kanchan&rft.date=2016-03-07&rft.volume=144&rft.issue=9&rft.spage=094701&rft.epage=094701&rft.pages=094701-094701&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4942655&rft_dat=%3Cproquest_pubme%3E2121875533%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121875533&rft_id=info:pmid/26957170&rfr_iscdi=true