An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage
Abstract The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with hig...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2015-05, Vol.48 (7), p.1310-1317 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1317 |
---|---|
container_issue | 7 |
container_start_page | 1310 |
container_title | Journal of biomechanics |
container_volume | 48 |
creator | Vikingsson, L Gómez-Tejedor, J.A Gallego Ferrer, G Gómez Ribelles, J.L |
description | Abstract The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance, stress–strain response and hysteresis energy have been measured after different number of fatigue cycles, while the morphology has been observed by scanning electron microscopy at the same fatigue times. To simulate the growing tissue in the scaffold/tissue construct, the scaffold was filled with an aqueous solution of polyvinyl alcohol (PVA) and subjected to repeating cycles of freezing and thawing that increase the hydrogel stiffness. Fatigue studies show that the mechanical loading provokes failure of the dry scaffold at a smaller number of deformation cycles than when it is immersed in water, and also that 100,000 compressive dynamic cycles do not affect the scaffold/gel construct. This shows the stability of the scaffold implanted in a chondral defect and gives a realistic simulation of the mechanical performance from implantation of the empty scaffold to regeneration of the new tissue inside the scaffold׳s pores. |
doi_str_mv | 10.1016/j.jbiomech.2015.02.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770381799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929015000925</els_id><sourcerecordid>1732831916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-f253ec1709b6d4a09734e29ca5234828dbdc611d80fbae5e17c3d961e70c97f93</originalsourceid><addsrcrecordid>eNqNkkFv1DAQhS0EotvCX6gsceGSMLaTOL4gqgoKUiUOwBXLsSdbh2y82EnF_nsctgWpl3KyD9979ps3hJwzKBmw5s1QDp0PO7Q3JQdWl8BLYOIJ2bBWioKLFp6SDQBnheIKTshpSgMAyEqq5-SE1y2rmJQb8v1iovhrj9HvcJrNSHsz--2CNM2LO9DQU0P3IYYl0WRN34fR0T5EOt8gjbjFCWMWhOkPGWdvl9FEatfraLb4gjzrzZjw5d15Rr59eP_18mNx_fnq0-XFdWEbyeei57VAyySornGVASVFhVxZU3NRtbx1nbMNY66FvjNYI5NWONUwlGCV7JU4I6-PvvsYfi6YZr3zyeI4mgnz33XOCqJlUv0PKngrmGLN42gjq6qSUrQZffUAHcISp5x5pQTjHBRkqjlSNoaUIvZ6nwdv4kEz0GuvetD3veq1Vw1c516z8PzOful26P7K7ovMwLsjgHnKtx6jTtbjZNH5iHbWLvjH33j7wMKOfvLWjD_wgOlfHp2yQH9Zt2tdLlbnxVK5wd8LMcrP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673122090</pqid></control><display><type>article</type><title>An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Vikingsson, L ; Gómez-Tejedor, J.A ; Gallego Ferrer, G ; Gómez Ribelles, J.L</creator><creatorcontrib>Vikingsson, L ; Gómez-Tejedor, J.A ; Gallego Ferrer, G ; Gómez Ribelles, J.L</creatorcontrib><description>Abstract The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance, stress–strain response and hysteresis energy have been measured after different number of fatigue cycles, while the morphology has been observed by scanning electron microscopy at the same fatigue times. To simulate the growing tissue in the scaffold/tissue construct, the scaffold was filled with an aqueous solution of polyvinyl alcohol (PVA) and subjected to repeating cycles of freezing and thawing that increase the hydrogel stiffness. Fatigue studies show that the mechanical loading provokes failure of the dry scaffold at a smaller number of deformation cycles than when it is immersed in water, and also that 100,000 compressive dynamic cycles do not affect the scaffold/gel construct. This shows the stability of the scaffold implanted in a chondral defect and gives a realistic simulation of the mechanical performance from implantation of the empty scaffold to regeneration of the new tissue inside the scaffold׳s pores.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2015.02.013</identifier><identifier>PMID: 25814177</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Aqueous solutions ; Arthritis ; Calorimetry, Differential Scanning ; Cartilage ; Cartilage regeneration ; Cartilage, Articular - physiology ; Collagen ; Compressive Strength ; Construction ; Defects ; Ethanol ; Fatigue (materials) ; Fatigue failure ; Fatigue prediction ; Humans ; Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry ; Hydrogels ; Materials Testing ; Mechanical properties ; Mechanical properties of biomaterials ; Microscopy, Electron, Scanning ; Models, Theoretical ; Morphology ; Physical Medicine and Rehabilitation ; Physiology ; Polyesters - chemistry ; Polyvinyl Alcohol ; Polyvinyl alcohols ; Porosity ; Professional relationships ; Prostheses and Implants ; Regeneration ; Scaffolds ; Simulation ; Solvents ; Studies ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Journal of biomechanics, 2015-05, Vol.48 (7), p.1310-1317</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-f253ec1709b6d4a09734e29ca5234828dbdc611d80fbae5e17c3d961e70c97f93</citedby><cites>FETCH-LOGICAL-c672t-f253ec1709b6d4a09734e29ca5234828dbdc611d80fbae5e17c3d961e70c97f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021929015000925$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25814177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vikingsson, L</creatorcontrib><creatorcontrib>Gómez-Tejedor, J.A</creatorcontrib><creatorcontrib>Gallego Ferrer, G</creatorcontrib><creatorcontrib>Gómez Ribelles, J.L</creatorcontrib><title>An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance, stress–strain response and hysteresis energy have been measured after different number of fatigue cycles, while the morphology has been observed by scanning electron microscopy at the same fatigue times. To simulate the growing tissue in the scaffold/tissue construct, the scaffold was filled with an aqueous solution of polyvinyl alcohol (PVA) and subjected to repeating cycles of freezing and thawing that increase the hydrogel stiffness. Fatigue studies show that the mechanical loading provokes failure of the dry scaffold at a smaller number of deformation cycles than when it is immersed in water, and also that 100,000 compressive dynamic cycles do not affect the scaffold/gel construct. This shows the stability of the scaffold implanted in a chondral defect and gives a realistic simulation of the mechanical performance from implantation of the empty scaffold to regeneration of the new tissue inside the scaffold׳s pores.</description><subject>Aqueous solutions</subject><subject>Arthritis</subject><subject>Calorimetry, Differential Scanning</subject><subject>Cartilage</subject><subject>Cartilage regeneration</subject><subject>Cartilage, Articular - physiology</subject><subject>Collagen</subject><subject>Compressive Strength</subject><subject>Construction</subject><subject>Defects</subject><subject>Ethanol</subject><subject>Fatigue (materials)</subject><subject>Fatigue failure</subject><subject>Fatigue prediction</subject><subject>Humans</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</subject><subject>Hydrogels</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Mechanical properties of biomaterials</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Theoretical</subject><subject>Morphology</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Physiology</subject><subject>Polyesters - chemistry</subject><subject>Polyvinyl Alcohol</subject><subject>Polyvinyl alcohols</subject><subject>Porosity</subject><subject>Professional relationships</subject><subject>Prostheses and Implants</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Simulation</subject><subject>Solvents</subject><subject>Studies</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkkFv1DAQhS0EotvCX6gsceGSMLaTOL4gqgoKUiUOwBXLsSdbh2y82EnF_nsctgWpl3KyD9979ps3hJwzKBmw5s1QDp0PO7Q3JQdWl8BLYOIJ2bBWioKLFp6SDQBnheIKTshpSgMAyEqq5-SE1y2rmJQb8v1iovhrj9HvcJrNSHsz--2CNM2LO9DQU0P3IYYl0WRN34fR0T5EOt8gjbjFCWMWhOkPGWdvl9FEatfraLb4gjzrzZjw5d15Rr59eP_18mNx_fnq0-XFdWEbyeei57VAyySornGVASVFhVxZU3NRtbx1nbMNY66FvjNYI5NWONUwlGCV7JU4I6-PvvsYfi6YZr3zyeI4mgnz33XOCqJlUv0PKngrmGLN42gjq6qSUrQZffUAHcISp5x5pQTjHBRkqjlSNoaUIvZ6nwdv4kEz0GuvetD3veq1Vw1c516z8PzOful26P7K7ovMwLsjgHnKtx6jTtbjZNH5iHbWLvjH33j7wMKOfvLWjD_wgOlfHp2yQH9Zt2tdLlbnxVK5wd8LMcrP</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Vikingsson, L</creator><creator>Gómez-Tejedor, J.A</creator><creator>Gallego Ferrer, G</creator><creator>Gómez Ribelles, J.L</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150501</creationdate><title>An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage</title><author>Vikingsson, L ; Gómez-Tejedor, J.A ; Gallego Ferrer, G ; Gómez Ribelles, J.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-f253ec1709b6d4a09734e29ca5234828dbdc611d80fbae5e17c3d961e70c97f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aqueous solutions</topic><topic>Arthritis</topic><topic>Calorimetry, Differential Scanning</topic><topic>Cartilage</topic><topic>Cartilage regeneration</topic><topic>Cartilage, Articular - physiology</topic><topic>Collagen</topic><topic>Compressive Strength</topic><topic>Construction</topic><topic>Defects</topic><topic>Ethanol</topic><topic>Fatigue (materials)</topic><topic>Fatigue failure</topic><topic>Fatigue prediction</topic><topic>Humans</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</topic><topic>Hydrogels</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Mechanical properties of biomaterials</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Theoretical</topic><topic>Morphology</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Physiology</topic><topic>Polyesters - chemistry</topic><topic>Polyvinyl Alcohol</topic><topic>Polyvinyl alcohols</topic><topic>Porosity</topic><topic>Professional relationships</topic><topic>Prostheses and Implants</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Simulation</topic><topic>Solvents</topic><topic>Studies</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vikingsson, L</creatorcontrib><creatorcontrib>Gómez-Tejedor, J.A</creatorcontrib><creatorcontrib>Gallego Ferrer, G</creatorcontrib><creatorcontrib>Gómez Ribelles, J.L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vikingsson, L</au><au>Gómez-Tejedor, J.A</au><au>Gallego Ferrer, G</au><au>Gómez Ribelles, J.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>48</volume><issue>7</issue><spage>1310</spage><epage>1317</epage><pages>1310-1317</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance, stress–strain response and hysteresis energy have been measured after different number of fatigue cycles, while the morphology has been observed by scanning electron microscopy at the same fatigue times. To simulate the growing tissue in the scaffold/tissue construct, the scaffold was filled with an aqueous solution of polyvinyl alcohol (PVA) and subjected to repeating cycles of freezing and thawing that increase the hydrogel stiffness. Fatigue studies show that the mechanical loading provokes failure of the dry scaffold at a smaller number of deformation cycles than when it is immersed in water, and also that 100,000 compressive dynamic cycles do not affect the scaffold/gel construct. This shows the stability of the scaffold implanted in a chondral defect and gives a realistic simulation of the mechanical performance from implantation of the empty scaffold to regeneration of the new tissue inside the scaffold׳s pores.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>25814177</pmid><doi>10.1016/j.jbiomech.2015.02.013</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2015-05, Vol.48 (7), p.1310-1317 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770381799 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Aqueous solutions Arthritis Calorimetry, Differential Scanning Cartilage Cartilage regeneration Cartilage, Articular - physiology Collagen Compressive Strength Construction Defects Ethanol Fatigue (materials) Fatigue failure Fatigue prediction Humans Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry Hydrogels Materials Testing Mechanical properties Mechanical properties of biomaterials Microscopy, Electron, Scanning Models, Theoretical Morphology Physical Medicine and Rehabilitation Physiology Polyesters - chemistry Polyvinyl Alcohol Polyvinyl alcohols Porosity Professional relationships Prostheses and Implants Regeneration Scaffolds Simulation Solvents Studies Tissue engineering Tissue Engineering - instrumentation Tissue Engineering - methods Tissue Scaffolds |
title | An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20fatigue%20study%20of%20a%20porous%20scaffold%20for%20the%20regeneration%20of%20articular%20cartilage&rft.jtitle=Journal%20of%20biomechanics&rft.au=Vikingsson,%20L&rft.date=2015-05-01&rft.volume=48&rft.issue=7&rft.spage=1310&rft.epage=1317&rft.pages=1310-1317&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2015.02.013&rft_dat=%3Cproquest_cross%3E1732831916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673122090&rft_id=info:pmid/25814177&rft_els_id=1_s2_0_S0021929015000925&rfr_iscdi=true |