An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage

Abstract The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2015-05, Vol.48 (7), p.1310-1317
Hauptverfasser: Vikingsson, L, Gómez-Tejedor, J.A, Gallego Ferrer, G, Gómez Ribelles, J.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1317
container_issue 7
container_start_page 1310
container_title Journal of biomechanics
container_volume 48
creator Vikingsson, L
Gómez-Tejedor, J.A
Gallego Ferrer, G
Gómez Ribelles, J.L
description Abstract The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance, stress–strain response and hysteresis energy have been measured after different number of fatigue cycles, while the morphology has been observed by scanning electron microscopy at the same fatigue times. To simulate the growing tissue in the scaffold/tissue construct, the scaffold was filled with an aqueous solution of polyvinyl alcohol (PVA) and subjected to repeating cycles of freezing and thawing that increase the hydrogel stiffness. Fatigue studies show that the mechanical loading provokes failure of the dry scaffold at a smaller number of deformation cycles than when it is immersed in water, and also that 100,000 compressive dynamic cycles do not affect the scaffold/gel construct. This shows the stability of the scaffold implanted in a chondral defect and gives a realistic simulation of the mechanical performance from implantation of the empty scaffold to regeneration of the new tissue inside the scaffold׳s pores.
doi_str_mv 10.1016/j.jbiomech.2015.02.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770381799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929015000925</els_id><sourcerecordid>1732831916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-f253ec1709b6d4a09734e29ca5234828dbdc611d80fbae5e17c3d961e70c97f93</originalsourceid><addsrcrecordid>eNqNkkFv1DAQhS0EotvCX6gsceGSMLaTOL4gqgoKUiUOwBXLsSdbh2y82EnF_nsctgWpl3KyD9979ps3hJwzKBmw5s1QDp0PO7Q3JQdWl8BLYOIJ2bBWioKLFp6SDQBnheIKTshpSgMAyEqq5-SE1y2rmJQb8v1iovhrj9HvcJrNSHsz--2CNM2LO9DQU0P3IYYl0WRN34fR0T5EOt8gjbjFCWMWhOkPGWdvl9FEatfraLb4gjzrzZjw5d15Rr59eP_18mNx_fnq0-XFdWEbyeei57VAyySornGVASVFhVxZU3NRtbx1nbMNY66FvjNYI5NWONUwlGCV7JU4I6-PvvsYfi6YZr3zyeI4mgnz33XOCqJlUv0PKngrmGLN42gjq6qSUrQZffUAHcISp5x5pQTjHBRkqjlSNoaUIvZ6nwdv4kEz0GuvetD3veq1Vw1c516z8PzOful26P7K7ovMwLsjgHnKtx6jTtbjZNH5iHbWLvjH33j7wMKOfvLWjD_wgOlfHp2yQH9Zt2tdLlbnxVK5wd8LMcrP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673122090</pqid></control><display><type>article</type><title>An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Vikingsson, L ; Gómez-Tejedor, J.A ; Gallego Ferrer, G ; Gómez Ribelles, J.L</creator><creatorcontrib>Vikingsson, L ; Gómez-Tejedor, J.A ; Gallego Ferrer, G ; Gómez Ribelles, J.L</creatorcontrib><description>Abstract The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance, stress–strain response and hysteresis energy have been measured after different number of fatigue cycles, while the morphology has been observed by scanning electron microscopy at the same fatigue times. To simulate the growing tissue in the scaffold/tissue construct, the scaffold was filled with an aqueous solution of polyvinyl alcohol (PVA) and subjected to repeating cycles of freezing and thawing that increase the hydrogel stiffness. Fatigue studies show that the mechanical loading provokes failure of the dry scaffold at a smaller number of deformation cycles than when it is immersed in water, and also that 100,000 compressive dynamic cycles do not affect the scaffold/gel construct. This shows the stability of the scaffold implanted in a chondral defect and gives a realistic simulation of the mechanical performance from implantation of the empty scaffold to regeneration of the new tissue inside the scaffold׳s pores.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2015.02.013</identifier><identifier>PMID: 25814177</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Aqueous solutions ; Arthritis ; Calorimetry, Differential Scanning ; Cartilage ; Cartilage regeneration ; Cartilage, Articular - physiology ; Collagen ; Compressive Strength ; Construction ; Defects ; Ethanol ; Fatigue (materials) ; Fatigue failure ; Fatigue prediction ; Humans ; Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry ; Hydrogels ; Materials Testing ; Mechanical properties ; Mechanical properties of biomaterials ; Microscopy, Electron, Scanning ; Models, Theoretical ; Morphology ; Physical Medicine and Rehabilitation ; Physiology ; Polyesters - chemistry ; Polyvinyl Alcohol ; Polyvinyl alcohols ; Porosity ; Professional relationships ; Prostheses and Implants ; Regeneration ; Scaffolds ; Simulation ; Solvents ; Studies ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Journal of biomechanics, 2015-05, Vol.48 (7), p.1310-1317</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-f253ec1709b6d4a09734e29ca5234828dbdc611d80fbae5e17c3d961e70c97f93</citedby><cites>FETCH-LOGICAL-c672t-f253ec1709b6d4a09734e29ca5234828dbdc611d80fbae5e17c3d961e70c97f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021929015000925$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25814177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vikingsson, L</creatorcontrib><creatorcontrib>Gómez-Tejedor, J.A</creatorcontrib><creatorcontrib>Gallego Ferrer, G</creatorcontrib><creatorcontrib>Gómez Ribelles, J.L</creatorcontrib><title>An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance, stress–strain response and hysteresis energy have been measured after different number of fatigue cycles, while the morphology has been observed by scanning electron microscopy at the same fatigue times. To simulate the growing tissue in the scaffold/tissue construct, the scaffold was filled with an aqueous solution of polyvinyl alcohol (PVA) and subjected to repeating cycles of freezing and thawing that increase the hydrogel stiffness. Fatigue studies show that the mechanical loading provokes failure of the dry scaffold at a smaller number of deformation cycles than when it is immersed in water, and also that 100,000 compressive dynamic cycles do not affect the scaffold/gel construct. This shows the stability of the scaffold implanted in a chondral defect and gives a realistic simulation of the mechanical performance from implantation of the empty scaffold to regeneration of the new tissue inside the scaffold׳s pores.</description><subject>Aqueous solutions</subject><subject>Arthritis</subject><subject>Calorimetry, Differential Scanning</subject><subject>Cartilage</subject><subject>Cartilage regeneration</subject><subject>Cartilage, Articular - physiology</subject><subject>Collagen</subject><subject>Compressive Strength</subject><subject>Construction</subject><subject>Defects</subject><subject>Ethanol</subject><subject>Fatigue (materials)</subject><subject>Fatigue failure</subject><subject>Fatigue prediction</subject><subject>Humans</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</subject><subject>Hydrogels</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Mechanical properties of biomaterials</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Theoretical</subject><subject>Morphology</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Physiology</subject><subject>Polyesters - chemistry</subject><subject>Polyvinyl Alcohol</subject><subject>Polyvinyl alcohols</subject><subject>Porosity</subject><subject>Professional relationships</subject><subject>Prostheses and Implants</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Simulation</subject><subject>Solvents</subject><subject>Studies</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkkFv1DAQhS0EotvCX6gsceGSMLaTOL4gqgoKUiUOwBXLsSdbh2y82EnF_nsctgWpl3KyD9979ps3hJwzKBmw5s1QDp0PO7Q3JQdWl8BLYOIJ2bBWioKLFp6SDQBnheIKTshpSgMAyEqq5-SE1y2rmJQb8v1iovhrj9HvcJrNSHsz--2CNM2LO9DQU0P3IYYl0WRN34fR0T5EOt8gjbjFCWMWhOkPGWdvl9FEatfraLb4gjzrzZjw5d15Rr59eP_18mNx_fnq0-XFdWEbyeei57VAyySornGVASVFhVxZU3NRtbx1nbMNY66FvjNYI5NWONUwlGCV7JU4I6-PvvsYfi6YZr3zyeI4mgnz33XOCqJlUv0PKngrmGLN42gjq6qSUrQZffUAHcISp5x5pQTjHBRkqjlSNoaUIvZ6nwdv4kEz0GuvetD3veq1Vw1c516z8PzOful26P7K7ovMwLsjgHnKtx6jTtbjZNH5iHbWLvjH33j7wMKOfvLWjD_wgOlfHp2yQH9Zt2tdLlbnxVK5wd8LMcrP</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Vikingsson, L</creator><creator>Gómez-Tejedor, J.A</creator><creator>Gallego Ferrer, G</creator><creator>Gómez Ribelles, J.L</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150501</creationdate><title>An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage</title><author>Vikingsson, L ; Gómez-Tejedor, J.A ; Gallego Ferrer, G ; Gómez Ribelles, J.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-f253ec1709b6d4a09734e29ca5234828dbdc611d80fbae5e17c3d961e70c97f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aqueous solutions</topic><topic>Arthritis</topic><topic>Calorimetry, Differential Scanning</topic><topic>Cartilage</topic><topic>Cartilage regeneration</topic><topic>Cartilage, Articular - physiology</topic><topic>Collagen</topic><topic>Compressive Strength</topic><topic>Construction</topic><topic>Defects</topic><topic>Ethanol</topic><topic>Fatigue (materials)</topic><topic>Fatigue failure</topic><topic>Fatigue prediction</topic><topic>Humans</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</topic><topic>Hydrogels</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Mechanical properties of biomaterials</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Theoretical</topic><topic>Morphology</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Physiology</topic><topic>Polyesters - chemistry</topic><topic>Polyvinyl Alcohol</topic><topic>Polyvinyl alcohols</topic><topic>Porosity</topic><topic>Professional relationships</topic><topic>Prostheses and Implants</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Simulation</topic><topic>Solvents</topic><topic>Studies</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vikingsson, L</creatorcontrib><creatorcontrib>Gómez-Tejedor, J.A</creatorcontrib><creatorcontrib>Gallego Ferrer, G</creatorcontrib><creatorcontrib>Gómez Ribelles, J.L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vikingsson, L</au><au>Gómez-Tejedor, J.A</au><au>Gallego Ferrer, G</au><au>Gómez Ribelles, J.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>48</volume><issue>7</issue><spage>1310</spage><epage>1317</epage><pages>1310-1317</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance, stress–strain response and hysteresis energy have been measured after different number of fatigue cycles, while the morphology has been observed by scanning electron microscopy at the same fatigue times. To simulate the growing tissue in the scaffold/tissue construct, the scaffold was filled with an aqueous solution of polyvinyl alcohol (PVA) and subjected to repeating cycles of freezing and thawing that increase the hydrogel stiffness. Fatigue studies show that the mechanical loading provokes failure of the dry scaffold at a smaller number of deformation cycles than when it is immersed in water, and also that 100,000 compressive dynamic cycles do not affect the scaffold/gel construct. This shows the stability of the scaffold implanted in a chondral defect and gives a realistic simulation of the mechanical performance from implantation of the empty scaffold to regeneration of the new tissue inside the scaffold׳s pores.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>25814177</pmid><doi>10.1016/j.jbiomech.2015.02.013</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2015-05, Vol.48 (7), p.1310-1317
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_1770381799
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aqueous solutions
Arthritis
Calorimetry, Differential Scanning
Cartilage
Cartilage regeneration
Cartilage, Articular - physiology
Collagen
Compressive Strength
Construction
Defects
Ethanol
Fatigue (materials)
Fatigue failure
Fatigue prediction
Humans
Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry
Hydrogels
Materials Testing
Mechanical properties
Mechanical properties of biomaterials
Microscopy, Electron, Scanning
Models, Theoretical
Morphology
Physical Medicine and Rehabilitation
Physiology
Polyesters - chemistry
Polyvinyl Alcohol
Polyvinyl alcohols
Porosity
Professional relationships
Prostheses and Implants
Regeneration
Scaffolds
Simulation
Solvents
Studies
Tissue engineering
Tissue Engineering - instrumentation
Tissue Engineering - methods
Tissue Scaffolds
title An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20fatigue%20study%20of%20a%20porous%20scaffold%20for%20the%20regeneration%20of%20articular%20cartilage&rft.jtitle=Journal%20of%20biomechanics&rft.au=Vikingsson,%20L&rft.date=2015-05-01&rft.volume=48&rft.issue=7&rft.spage=1310&rft.epage=1317&rft.pages=1310-1317&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2015.02.013&rft_dat=%3Cproquest_cross%3E1732831916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673122090&rft_id=info:pmid/25814177&rft_els_id=1_s2_0_S0021929015000925&rfr_iscdi=true