Cyclodextrin-Based Host–Guest Supramolecular Nanoparticles for Delivery: From Design to Applications

Conspectus Efficient assembly in host–guest interactions is crucial to supramolecular nanotechnology. Cyclodextrins (CDs), which possess a hydrophilic exterior surface and hydrophobic interior cavity on the truncated cone, improve the biocompatibility of nanodelivery systems, and hence, supramolecul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Accounts of chemical research 2014-07, Vol.47 (7), p.2017-2025
Hauptverfasser: Hu, Qi-Da, Tang, Gu-Ping, Chu, Paul K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conspectus Efficient assembly in host–guest interactions is crucial to supramolecular nanotechnology. Cyclodextrins (CDs), which possess a hydrophilic exterior surface and hydrophobic interior cavity on the truncated cone, improve the biocompatibility of nanodelivery systems, and hence, supramolecular approaches utilizing CDs can improve and expand the design and applications of functional delivery systems. Owing to good inclusion ability, αCD and βCD are commonly used in the design and construction of supramolecular structures. In this Account, we describe the design strategies to adopt CDs in host–guest delivery systems. Modification of CDs with polymers is popular in current research due to the potential benefits rendered by cationic protection and improved capability. While the process has only minor influence on the host characteristics of the CD cavity, the interaction between the CD and the guest moiety imparts new attributes to the nanosystems with guest-decorated functional groups such as adamantyl poly­(ethylene glycol) (PEG) for coating protection, hybrid guests for conformational flexibility, and adamantyl prodrugs for drug delivery. Some specific agents form inclusion complexes with the polymerized βCDs directly and core–shell nanoparticles with hydrophobic cores and are usually created to carry insoluble drugs while the hydrophilic shells offer protection. These unique designs provide the means to practically adapt special characteristics for additional functions or co-delivery. In order to be accepted clinically, delivery systems need to possess extra functions such as controlled particle size, biodegradability, controlled release, and targeted delivery to overcome the hurdles in delivery. These features can be added to biomaterials by self-assembly of functional groups facilitated by the host–guest interactions. Size control by hybridization of switchable polymer compartments in supramolecular structures contributes to the biodistribution utility and biodegradability by incorporating the moieties with hydrolyzable connections and enhancing intracellular degradation and clearance. Controlled release by application of responsive structures like molecular gatings eased by the host–guest interaction can be triggered by the tumor microenvironment at extreme pH and temperature or by external stimuli such as light. Along with the binding selectivity and controlled release, the host–guest nanoparticles show enhanced efficacy in delivery especially
ISSN:0001-4842
1520-4898
DOI:10.1021/ar500055s