Prediction of non-methane hydrocarbons in Kuwait using regression and Bayesian kriged Kalman model
This article describes the hierarchical Bayesian approach for predicting average hourly concentrations of ambient non-methane hydrocarbons (NMHC) in Kuwait where records of six monitor stations located in different sites are observed at successive time points. Our objective is to predict the concent...
Gespeichert in:
Veröffentlicht in: | Environmental and ecological statistics 2012-09, Vol.19 (3), p.393-412 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 412 |
---|---|
container_issue | 3 |
container_start_page | 393 |
container_title | Environmental and ecological statistics |
container_volume | 19 |
creator | Al-Awadhi, Fahimah A Alhajraf, Ali |
description | This article describes the hierarchical Bayesian approach for predicting average hourly concentrations of ambient non-methane hydrocarbons (NMHC) in Kuwait where records of six monitor stations located in different sites are observed at successive time points. Our objective is to predict the concentration level of NMHC in unmonitored areas. Here an attempt is made for the prediction of unmeasured concentration of NMHC at two additional locations in Kuwait. We will implement a kriged Kalman filter (KKF) hierarchical Bayesian approach assuming a Gaussian random field, a technique that allows the pooling of data from different sites in order to predict the exposure of the NMHC in different regions of Kuwait. In order to increase the accuracy of the KKF we will use other statistical models such as imputation, regression, principal components, and time series analysis in our approach. We considered four different types of imputation techniques to address the missing data. At the primary level, the logarithmic field is modeled as a trend plus Gaussian stochastic residual model. The trend model depends on hourly meteorological predictors which are common to all sites. The residuals are then modeled using KKF, and the prediction equation is derived conditioned on adjoining hours. On this basis we developed a spatial predictive distribution for these residuals at unmonitored sites. By transforming the predicted residuals back to the original data scales, we can impute Kuwait’s hourly non-methane hydrocarbons field. |
doi_str_mv | 10.1007/s10651-012-0192-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770374975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2748893261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-7a9c5858355519c8be35371330a52204f41d495f277f866b18ab760e6ae08e323</originalsourceid><addsrcrecordid>eNqFkU1r10AQxoMoWKsfwJMLXrxEZ3azLzlqqS-00ELtedkkk3Rrslt3E-T_7d0_8SCC9DDMDPyehxmeqnqN8B4B9IeMoCTWgLxUy2v5pDpBqUUtANqnZRaS10aCfF69yPkeABrk8qTqrhMNvl99DCyOLMRQL7TeuUDs7jCk2LvUxZCZD-xi--X8yrbsw8QSTYlyPspcGNgnd6DsXWA_kp9oYBduXsq2xIHml9Wz0c2ZXv3pp9Xt5_PvZ1_ry6sv384-XtZ9A2qttWt7aaQRUkpse9ORkEKjEOAk59CMDQ5NK0eu9WiU6tC4Tisg5QgMCS5Oq3e770OKPzfKq1187mmeyzNxyxa1BqGbVsvHURSqKQWqoG__Qe_jlkJ5xGKx44YrDoXCnepTzDnRaB-SX1w6FMgeA7J7QLYEZI8B2eMRfNfkwoaJ0t_O_xe92UWji9ZNyWd7e8MBGwCUgnMjfgPcSpoe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037282620</pqid></control><display><type>article</type><title>Prediction of non-methane hydrocarbons in Kuwait using regression and Bayesian kriged Kalman model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Al-Awadhi, Fahimah A ; Alhajraf, Ali</creator><creatorcontrib>Al-Awadhi, Fahimah A ; Alhajraf, Ali</creatorcontrib><description>This article describes the hierarchical Bayesian approach for predicting average hourly concentrations of ambient non-methane hydrocarbons (NMHC) in Kuwait where records of six monitor stations located in different sites are observed at successive time points. Our objective is to predict the concentration level of NMHC in unmonitored areas. Here an attempt is made for the prediction of unmeasured concentration of NMHC at two additional locations in Kuwait. We will implement a kriged Kalman filter (KKF) hierarchical Bayesian approach assuming a Gaussian random field, a technique that allows the pooling of data from different sites in order to predict the exposure of the NMHC in different regions of Kuwait. In order to increase the accuracy of the KKF we will use other statistical models such as imputation, regression, principal components, and time series analysis in our approach. We considered four different types of imputation techniques to address the missing data. At the primary level, the logarithmic field is modeled as a trend plus Gaussian stochastic residual model. The trend model depends on hourly meteorological predictors which are common to all sites. The residuals are then modeled using KKF, and the prediction equation is derived conditioned on adjoining hours. On this basis we developed a spatial predictive distribution for these residuals at unmonitored sites. By transforming the predicted residuals back to the original data scales, we can impute Kuwait’s hourly non-methane hydrocarbons field.</description><identifier>ISSN: 1352-8505</identifier><identifier>EISSN: 1573-3009</identifier><identifier>DOI: 10.1007/s10651-012-0192-5</identifier><language>eng</language><publisher>Boston: Springer-Verlag</publisher><subject>Air pollution ; Bayesian analysis ; Biomedical and Life Sciences ; Carbon monoxide ; Chemistry and Earth Sciences ; Computer Science ; Ecology ; Environmental monitoring ; equations ; Gaussian ; Health Sciences ; Hydrocarbons ; Life Sciences ; Math. Appl. in Environmental Science ; Mathematical models ; Medicine ; Methane ; Outdoor air quality ; Ozone ; Physics ; Pollutants ; prediction ; Regression ; Spacetime ; Statistical analysis ; Statistical models ; Statistics for Engineering ; Statistics for Life Sciences ; Studies ; Sulfur ; Theoretical Ecology/Statistics ; Time series analysis ; Trends</subject><ispartof>Environmental and ecological statistics, 2012-09, Vol.19 (3), p.393-412</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-7a9c5858355519c8be35371330a52204f41d495f277f866b18ab760e6ae08e323</citedby><cites>FETCH-LOGICAL-c406t-7a9c5858355519c8be35371330a52204f41d495f277f866b18ab760e6ae08e323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10651-012-0192-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10651-012-0192-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Al-Awadhi, Fahimah A</creatorcontrib><creatorcontrib>Alhajraf, Ali</creatorcontrib><title>Prediction of non-methane hydrocarbons in Kuwait using regression and Bayesian kriged Kalman model</title><title>Environmental and ecological statistics</title><addtitle>Environ Ecol Stat</addtitle><description>This article describes the hierarchical Bayesian approach for predicting average hourly concentrations of ambient non-methane hydrocarbons (NMHC) in Kuwait where records of six monitor stations located in different sites are observed at successive time points. Our objective is to predict the concentration level of NMHC in unmonitored areas. Here an attempt is made for the prediction of unmeasured concentration of NMHC at two additional locations in Kuwait. We will implement a kriged Kalman filter (KKF) hierarchical Bayesian approach assuming a Gaussian random field, a technique that allows the pooling of data from different sites in order to predict the exposure of the NMHC in different regions of Kuwait. In order to increase the accuracy of the KKF we will use other statistical models such as imputation, regression, principal components, and time series analysis in our approach. We considered four different types of imputation techniques to address the missing data. At the primary level, the logarithmic field is modeled as a trend plus Gaussian stochastic residual model. The trend model depends on hourly meteorological predictors which are common to all sites. The residuals are then modeled using KKF, and the prediction equation is derived conditioned on adjoining hours. On this basis we developed a spatial predictive distribution for these residuals at unmonitored sites. By transforming the predicted residuals back to the original data scales, we can impute Kuwait’s hourly non-methane hydrocarbons field.</description><subject>Air pollution</subject><subject>Bayesian analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon monoxide</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Ecology</subject><subject>Environmental monitoring</subject><subject>equations</subject><subject>Gaussian</subject><subject>Health Sciences</subject><subject>Hydrocarbons</subject><subject>Life Sciences</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Methane</subject><subject>Outdoor air quality</subject><subject>Ozone</subject><subject>Physics</subject><subject>Pollutants</subject><subject>prediction</subject><subject>Regression</subject><subject>Spacetime</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Studies</subject><subject>Sulfur</subject><subject>Theoretical Ecology/Statistics</subject><subject>Time series analysis</subject><subject>Trends</subject><issn>1352-8505</issn><issn>1573-3009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1r10AQxoMoWKsfwJMLXrxEZ3azLzlqqS-00ELtedkkk3Rrslt3E-T_7d0_8SCC9DDMDPyehxmeqnqN8B4B9IeMoCTWgLxUy2v5pDpBqUUtANqnZRaS10aCfF69yPkeABrk8qTqrhMNvl99DCyOLMRQL7TeuUDs7jCk2LvUxZCZD-xi--X8yrbsw8QSTYlyPspcGNgnd6DsXWA_kp9oYBduXsq2xIHml9Wz0c2ZXv3pp9Xt5_PvZ1_ry6sv384-XtZ9A2qttWt7aaQRUkpse9ORkEKjEOAk59CMDQ5NK0eu9WiU6tC4Tisg5QgMCS5Oq3e770OKPzfKq1187mmeyzNxyxa1BqGbVsvHURSqKQWqoG__Qe_jlkJ5xGKx44YrDoXCnepTzDnRaB-SX1w6FMgeA7J7QLYEZI8B2eMRfNfkwoaJ0t_O_xe92UWji9ZNyWd7e8MBGwCUgnMjfgPcSpoe</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Al-Awadhi, Fahimah A</creator><creator>Alhajraf, Ali</creator><general>Springer-Verlag</general><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.G</scope><scope>LK8</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7SU</scope><scope>KR7</scope></search><sort><creationdate>20120901</creationdate><title>Prediction of non-methane hydrocarbons in Kuwait using regression and Bayesian kriged Kalman model</title><author>Al-Awadhi, Fahimah A ; Alhajraf, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-7a9c5858355519c8be35371330a52204f41d495f277f866b18ab760e6ae08e323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Air pollution</topic><topic>Bayesian analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon monoxide</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Ecology</topic><topic>Environmental monitoring</topic><topic>equations</topic><topic>Gaussian</topic><topic>Health Sciences</topic><topic>Hydrocarbons</topic><topic>Life Sciences</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Methane</topic><topic>Outdoor air quality</topic><topic>Ozone</topic><topic>Physics</topic><topic>Pollutants</topic><topic>prediction</topic><topic>Regression</topic><topic>Spacetime</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Studies</topic><topic>Sulfur</topic><topic>Theoretical Ecology/Statistics</topic><topic>Time series analysis</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Awadhi, Fahimah A</creatorcontrib><creatorcontrib>Alhajraf, Ali</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Environmental and ecological statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Awadhi, Fahimah A</au><au>Alhajraf, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of non-methane hydrocarbons in Kuwait using regression and Bayesian kriged Kalman model</atitle><jtitle>Environmental and ecological statistics</jtitle><stitle>Environ Ecol Stat</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>19</volume><issue>3</issue><spage>393</spage><epage>412</epage><pages>393-412</pages><issn>1352-8505</issn><eissn>1573-3009</eissn><abstract>This article describes the hierarchical Bayesian approach for predicting average hourly concentrations of ambient non-methane hydrocarbons (NMHC) in Kuwait where records of six monitor stations located in different sites are observed at successive time points. Our objective is to predict the concentration level of NMHC in unmonitored areas. Here an attempt is made for the prediction of unmeasured concentration of NMHC at two additional locations in Kuwait. We will implement a kriged Kalman filter (KKF) hierarchical Bayesian approach assuming a Gaussian random field, a technique that allows the pooling of data from different sites in order to predict the exposure of the NMHC in different regions of Kuwait. In order to increase the accuracy of the KKF we will use other statistical models such as imputation, regression, principal components, and time series analysis in our approach. We considered four different types of imputation techniques to address the missing data. At the primary level, the logarithmic field is modeled as a trend plus Gaussian stochastic residual model. The trend model depends on hourly meteorological predictors which are common to all sites. The residuals are then modeled using KKF, and the prediction equation is derived conditioned on adjoining hours. On this basis we developed a spatial predictive distribution for these residuals at unmonitored sites. By transforming the predicted residuals back to the original data scales, we can impute Kuwait’s hourly non-methane hydrocarbons field.</abstract><cop>Boston</cop><pub>Springer-Verlag</pub><doi>10.1007/s10651-012-0192-5</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1352-8505 |
ispartof | Environmental and ecological statistics, 2012-09, Vol.19 (3), p.393-412 |
issn | 1352-8505 1573-3009 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770374975 |
source | SpringerLink Journals - AutoHoldings |
subjects | Air pollution Bayesian analysis Biomedical and Life Sciences Carbon monoxide Chemistry and Earth Sciences Computer Science Ecology Environmental monitoring equations Gaussian Health Sciences Hydrocarbons Life Sciences Math. Appl. in Environmental Science Mathematical models Medicine Methane Outdoor air quality Ozone Physics Pollutants prediction Regression Spacetime Statistical analysis Statistical models Statistics for Engineering Statistics for Life Sciences Studies Sulfur Theoretical Ecology/Statistics Time series analysis Trends |
title | Prediction of non-methane hydrocarbons in Kuwait using regression and Bayesian kriged Kalman model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20non-methane%20hydrocarbons%20in%20Kuwait%20using%20regression%20and%20Bayesian%20kriged%20Kalman%20model&rft.jtitle=Environmental%20and%20ecological%20statistics&rft.au=Al-Awadhi,%20Fahimah%20A&rft.date=2012-09-01&rft.volume=19&rft.issue=3&rft.spage=393&rft.epage=412&rft.pages=393-412&rft.issn=1352-8505&rft.eissn=1573-3009&rft_id=info:doi/10.1007/s10651-012-0192-5&rft_dat=%3Cproquest_cross%3E2748893261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037282620&rft_id=info:pmid/&rfr_iscdi=true |