Recent Progress in Non-Precious Catalysts for Metal-Air Batteries

Electrical energy storage and conversion is vital to a clean, sustainable, and secure energy future. Among all electrochemical energy storage devices, metal‐air batteries have potential to offer the highest energy density, representing the most promising systems for portable (electronics), mobile (e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2012-07, Vol.2 (7), p.816-829
Hauptverfasser: Cao, Ruiguo, Lee, Jang-Soo, Liu, Meilin, Cho, Jaephil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 829
container_issue 7
container_start_page 816
container_title Advanced energy materials
container_volume 2
creator Cao, Ruiguo
Lee, Jang-Soo
Liu, Meilin
Cho, Jaephil
description Electrical energy storage and conversion is vital to a clean, sustainable, and secure energy future. Among all electrochemical energy storage devices, metal‐air batteries have potential to offer the highest energy density, representing the most promising systems for portable (electronics), mobile (electrical vehicles), and stationary (micro‐grids) applications. To date, however, many fundamental issues are yet to be overcome to realize this potential. For example, efficient catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air‐electrode are yet to be developed to significantly reduce the polarization loss in metal‐air batteries, which severely hinders the rate capability, energy efficiency, and operational life. In this progress report, a brief overview is first presented of the critical issues relevant to air‐electrodes in metal‐air batteries. Some recent advancements in the development of non‐precious catalysts for ORR in Li‐air and Zn‐air batteries are then highlighted, including transition metal oxides, low‐dimensional carbon‐based structures, and other catalysts such as transition‐metal macrocycles and metal nitrides. New directions and future perspectives for metal‐air batteries are also outlined. Non‐precious catalysts for oxygen reduction reactions in the air electrode play a vital role in reducing polarization during cycling and enhancing the performance of metal‐air batteries. Recent developments in non‐precious catalysts for Li‐air and Zn‐air batteries are highlighted.
doi_str_mv 10.1002/aenm.201200013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770373558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3406773391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4543-c5f65d950f9f430f9b02fdd78ffc63dec73f77665682b0f3cd247549905f18073</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhosoOHRXzwUvXjq__GraYx1zCuscouwYsjSRzK6dSYfuvzejMsSLl3z54Hk-Xt4oukIwQgD4VupmM8KAMAAgchINUIpokmYUTo9_gs-joffrgADNERAyiIpnrXTTxQvXvjntfWybeN42ycJpZdudj8eyk_Xedz42rYtLHbaksC6-k12nndX-MjozsvZ6-DMvotf7ycv4IZk9TR_HxSxRlFGSKGZSVuUMTG4oCe8KsKkqnhmjUlJpxYnhPE1ZmuEVGKIqTDmjeQ7MoAw4uYhu-rtb137stO_Exnql61o2OgQViHMgnDCWBfT6D7pud64J6QRiIQzCOSaBGvWUcq33ThuxdXYj3V4gEIdSxaFUcSw1CHkvfNpa7_-hRTGZl7_dpHet7_TX0ZXuXaSccCaW86nIxuUyh3IqOPkGmROHjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554312923</pqid></control><display><type>article</type><title>Recent Progress in Non-Precious Catalysts for Metal-Air Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cao, Ruiguo ; Lee, Jang-Soo ; Liu, Meilin ; Cho, Jaephil</creator><creatorcontrib>Cao, Ruiguo ; Lee, Jang-Soo ; Liu, Meilin ; Cho, Jaephil</creatorcontrib><description>Electrical energy storage and conversion is vital to a clean, sustainable, and secure energy future. Among all electrochemical energy storage devices, metal‐air batteries have potential to offer the highest energy density, representing the most promising systems for portable (electronics), mobile (electrical vehicles), and stationary (micro‐grids) applications. To date, however, many fundamental issues are yet to be overcome to realize this potential. For example, efficient catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air‐electrode are yet to be developed to significantly reduce the polarization loss in metal‐air batteries, which severely hinders the rate capability, energy efficiency, and operational life. In this progress report, a brief overview is first presented of the critical issues relevant to air‐electrodes in metal‐air batteries. Some recent advancements in the development of non‐precious catalysts for ORR in Li‐air and Zn‐air batteries are then highlighted, including transition metal oxides, low‐dimensional carbon‐based structures, and other catalysts such as transition‐metal macrocycles and metal nitrides. New directions and future perspectives for metal‐air batteries are also outlined. Non‐precious catalysts for oxygen reduction reactions in the air electrode play a vital role in reducing polarization during cycling and enhancing the performance of metal‐air batteries. Recent developments in non‐precious catalysts for Li‐air and Zn‐air batteries are highlighted.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201200013</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Catalysis ; Catalysts ; Electronics ; Energy storage ; Metal air batteries ; non-precious catalysts ; oxygen reduction reaction ; Polarization ; R&amp;D ; Reduction ; Research &amp; development ; Zinc</subject><ispartof>Advanced energy materials, 2012-07, Vol.2 (7), p.816-829</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4543-c5f65d950f9f430f9b02fdd78ffc63dec73f77665682b0f3cd247549905f18073</citedby><cites>FETCH-LOGICAL-c4543-c5f65d950f9f430f9b02fdd78ffc63dec73f77665682b0f3cd247549905f18073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201200013$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201200013$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Cao, Ruiguo</creatorcontrib><creatorcontrib>Lee, Jang-Soo</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><creatorcontrib>Cho, Jaephil</creatorcontrib><title>Recent Progress in Non-Precious Catalysts for Metal-Air Batteries</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>Electrical energy storage and conversion is vital to a clean, sustainable, and secure energy future. Among all electrochemical energy storage devices, metal‐air batteries have potential to offer the highest energy density, representing the most promising systems for portable (electronics), mobile (electrical vehicles), and stationary (micro‐grids) applications. To date, however, many fundamental issues are yet to be overcome to realize this potential. For example, efficient catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air‐electrode are yet to be developed to significantly reduce the polarization loss in metal‐air batteries, which severely hinders the rate capability, energy efficiency, and operational life. In this progress report, a brief overview is first presented of the critical issues relevant to air‐electrodes in metal‐air batteries. Some recent advancements in the development of non‐precious catalysts for ORR in Li‐air and Zn‐air batteries are then highlighted, including transition metal oxides, low‐dimensional carbon‐based structures, and other catalysts such as transition‐metal macrocycles and metal nitrides. New directions and future perspectives for metal‐air batteries are also outlined. Non‐precious catalysts for oxygen reduction reactions in the air electrode play a vital role in reducing polarization during cycling and enhancing the performance of metal‐air batteries. Recent developments in non‐precious catalysts for Li‐air and Zn‐air batteries are highlighted.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Electronics</subject><subject>Energy storage</subject><subject>Metal air batteries</subject><subject>non-precious catalysts</subject><subject>oxygen reduction reaction</subject><subject>Polarization</subject><subject>R&amp;D</subject><subject>Reduction</subject><subject>Research &amp; development</subject><subject>Zinc</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAYhosoOHRXzwUvXjq__GraYx1zCuscouwYsjSRzK6dSYfuvzejMsSLl3z54Hk-Xt4oukIwQgD4VupmM8KAMAAgchINUIpokmYUTo9_gs-joffrgADNERAyiIpnrXTTxQvXvjntfWybeN42ycJpZdudj8eyk_Xedz42rYtLHbaksC6-k12nndX-MjozsvZ6-DMvotf7ycv4IZk9TR_HxSxRlFGSKGZSVuUMTG4oCe8KsKkqnhmjUlJpxYnhPE1ZmuEVGKIqTDmjeQ7MoAw4uYhu-rtb137stO_Exnql61o2OgQViHMgnDCWBfT6D7pud64J6QRiIQzCOSaBGvWUcq33ThuxdXYj3V4gEIdSxaFUcSw1CHkvfNpa7_-hRTGZl7_dpHet7_TX0ZXuXaSccCaW86nIxuUyh3IqOPkGmROHjg</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Cao, Ruiguo</creator><creator>Lee, Jang-Soo</creator><creator>Liu, Meilin</creator><creator>Cho, Jaephil</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201207</creationdate><title>Recent Progress in Non-Precious Catalysts for Metal-Air Batteries</title><author>Cao, Ruiguo ; Lee, Jang-Soo ; Liu, Meilin ; Cho, Jaephil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4543-c5f65d950f9f430f9b02fdd78ffc63dec73f77665682b0f3cd247549905f18073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Electronics</topic><topic>Energy storage</topic><topic>Metal air batteries</topic><topic>non-precious catalysts</topic><topic>oxygen reduction reaction</topic><topic>Polarization</topic><topic>R&amp;D</topic><topic>Reduction</topic><topic>Research &amp; development</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Ruiguo</creatorcontrib><creatorcontrib>Lee, Jang-Soo</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><creatorcontrib>Cho, Jaephil</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Ruiguo</au><au>Lee, Jang-Soo</au><au>Liu, Meilin</au><au>Cho, Jaephil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Progress in Non-Precious Catalysts for Metal-Air Batteries</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2012-07</date><risdate>2012</risdate><volume>2</volume><issue>7</issue><spage>816</spage><epage>829</epage><pages>816-829</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Electrical energy storage and conversion is vital to a clean, sustainable, and secure energy future. Among all electrochemical energy storage devices, metal‐air batteries have potential to offer the highest energy density, representing the most promising systems for portable (electronics), mobile (electrical vehicles), and stationary (micro‐grids) applications. To date, however, many fundamental issues are yet to be overcome to realize this potential. For example, efficient catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air‐electrode are yet to be developed to significantly reduce the polarization loss in metal‐air batteries, which severely hinders the rate capability, energy efficiency, and operational life. In this progress report, a brief overview is first presented of the critical issues relevant to air‐electrodes in metal‐air batteries. Some recent advancements in the development of non‐precious catalysts for ORR in Li‐air and Zn‐air batteries are then highlighted, including transition metal oxides, low‐dimensional carbon‐based structures, and other catalysts such as transition‐metal macrocycles and metal nitrides. New directions and future perspectives for metal‐air batteries are also outlined. Non‐precious catalysts for oxygen reduction reactions in the air electrode play a vital role in reducing polarization during cycling and enhancing the performance of metal‐air batteries. Recent developments in non‐precious catalysts for Li‐air and Zn‐air batteries are highlighted.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/aenm.201200013</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2012-07, Vol.2 (7), p.816-829
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_miscellaneous_1770373558
source Wiley Online Library Journals Frontfile Complete
subjects Catalysis
Catalysts
Electronics
Energy storage
Metal air batteries
non-precious catalysts
oxygen reduction reaction
Polarization
R&D
Reduction
Research & development
Zinc
title Recent Progress in Non-Precious Catalysts for Metal-Air Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Progress%20in%20Non-Precious%20Catalysts%20for%20Metal-Air%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Cao,%20Ruiguo&rft.date=2012-07&rft.volume=2&rft.issue=7&rft.spage=816&rft.epage=829&rft.pages=816-829&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201200013&rft_dat=%3Cproquest_cross%3E3406773391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554312923&rft_id=info:pmid/&rfr_iscdi=true