Slow, steady ascent in a power-law fluid with temperature-dependent viscosity
► Complete asymptotic analysis (four regimes) for the ascent of a zero-traction sphere in a non-isothermal power law fluid (shear-thickening and shear-thinning). ► Closed-form expressions for the drag. ► Closed form expressions for the Nusselt number. ► Closed form expressions for the rise velocity....
Gespeichert in:
Veröffentlicht in: | Journal of non-Newtonian fluid mechanics 2013-05, Vol.195, p.9-18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | |
container_start_page | 9 |
container_title | Journal of non-Newtonian fluid mechanics |
container_volume | 195 |
creator | Vynnycky, M. O’Brien, M.A. |
description | ► Complete asymptotic analysis (four regimes) for the ascent of a zero-traction sphere in a non-isothermal power law fluid (shear-thickening and shear-thinning). ► Closed-form expressions for the drag. ► Closed form expressions for the Nusselt number. ► Closed form expressions for the rise velocity.
In this paper, we consider the problem of a hot buoyant spherical body with a zero-traction surface ascending through a power-law fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ϵ. For mild viscosity variations, Levich’s classical result for an isoviscous Newtonian fluid is generalized; more severe viscosity variations lead to an involved four-regime asymptotic structure that has similarities with that found for a Newtonian fluid with temperature-dependent viscosity. |
doi_str_mv | 10.1016/j.jnnfm.2012.12.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770373545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025712002601</els_id><sourcerecordid>1770373545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-efe9dc352ca3e960400a7e4dc670247c0b61954adea118fa21e8e76697b476bf3</originalsourceid><addsrcrecordid>eNqFkDtPxDAQhC0EEsfBL6BJSUGCHTt2UlCgEy_pEAVQWz57Ixzlhe1cdP8eH0cNq5G2mVntfAhdEpwRTPhNkzV9X3dZjkmeRWFMjtCClIKmOafkGC0wFSLFeSFO0Zn3DY5TUL5AL2_tMF8nPoAyu0R5DX1IbJ-oZBxmcGmr5qRuJ2uS2YbPJEA3glNhcpAaGKE3e__Wej14G3bn6KRWrYeL371EHw_376undP36-Ly6W6ea8iqkUENlNC1yrShUHDOMlQBmNBc4Z0LjDSdVwZQBRUhZq5xACYLzSmyY4JuaLtHV4e7ohq8JfJBdfAHaVvUwTF4SIWJhWrDifytjpSCMR_sS0YNVu8F7B7Ucne2U20mC5Z6zbOQPZ7nnLKMi55i6PaQgFt5acNJrC70GYx3oIM1g_8x_A1s0h2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448714637</pqid></control><display><type>article</type><title>Slow, steady ascent in a power-law fluid with temperature-dependent viscosity</title><source>Elsevier ScienceDirect Journals</source><creator>Vynnycky, M. ; O’Brien, M.A.</creator><creatorcontrib>Vynnycky, M. ; O’Brien, M.A.</creatorcontrib><description>► Complete asymptotic analysis (four regimes) for the ascent of a zero-traction sphere in a non-isothermal power law fluid (shear-thickening and shear-thinning). ► Closed-form expressions for the drag. ► Closed form expressions for the Nusselt number. ► Closed form expressions for the rise velocity.
In this paper, we consider the problem of a hot buoyant spherical body with a zero-traction surface ascending through a power-law fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ϵ. For mild viscosity variations, Levich’s classical result for an isoviscous Newtonian fluid is generalized; more severe viscosity variations lead to an involved four-regime asymptotic structure that has similarities with that found for a Newtonian fluid with temperature-dependent viscosity.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2012.12.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Asymptotics ; Buoyancy ; Fluid dynamics ; Fluid flow ; Fluids ; Mathematical analysis ; Newtonian fluids ; Slow flow ; Temperature-dependent viscosity ; Viscosity</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2013-05, Vol.195, p.9-18</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-efe9dc352ca3e960400a7e4dc670247c0b61954adea118fa21e8e76697b476bf3</citedby><cites>FETCH-LOGICAL-c369t-efe9dc352ca3e960400a7e4dc670247c0b61954adea118fa21e8e76697b476bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377025712002601$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Vynnycky, M.</creatorcontrib><creatorcontrib>O’Brien, M.A.</creatorcontrib><title>Slow, steady ascent in a power-law fluid with temperature-dependent viscosity</title><title>Journal of non-Newtonian fluid mechanics</title><description>► Complete asymptotic analysis (four regimes) for the ascent of a zero-traction sphere in a non-isothermal power law fluid (shear-thickening and shear-thinning). ► Closed-form expressions for the drag. ► Closed form expressions for the Nusselt number. ► Closed form expressions for the rise velocity.
In this paper, we consider the problem of a hot buoyant spherical body with a zero-traction surface ascending through a power-law fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ϵ. For mild viscosity variations, Levich’s classical result for an isoviscous Newtonian fluid is generalized; more severe viscosity variations lead to an involved four-regime asymptotic structure that has similarities with that found for a Newtonian fluid with temperature-dependent viscosity.</description><subject>Asymptotic properties</subject><subject>Asymptotics</subject><subject>Buoyancy</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Mathematical analysis</subject><subject>Newtonian fluids</subject><subject>Slow flow</subject><subject>Temperature-dependent viscosity</subject><subject>Viscosity</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPxDAQhC0EEsfBL6BJSUGCHTt2UlCgEy_pEAVQWz57Ixzlhe1cdP8eH0cNq5G2mVntfAhdEpwRTPhNkzV9X3dZjkmeRWFMjtCClIKmOafkGC0wFSLFeSFO0Zn3DY5TUL5AL2_tMF8nPoAyu0R5DX1IbJ-oZBxmcGmr5qRuJ2uS2YbPJEA3glNhcpAaGKE3e__Wej14G3bn6KRWrYeL371EHw_376undP36-Ly6W6ea8iqkUENlNC1yrShUHDOMlQBmNBc4Z0LjDSdVwZQBRUhZq5xACYLzSmyY4JuaLtHV4e7ohq8JfJBdfAHaVvUwTF4SIWJhWrDifytjpSCMR_sS0YNVu8F7B7Ucne2U20mC5Z6zbOQPZ7nnLKMi55i6PaQgFt5acNJrC70GYx3oIM1g_8x_A1s0h2w</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Vynnycky, M.</creator><creator>O’Brien, M.A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201305</creationdate><title>Slow, steady ascent in a power-law fluid with temperature-dependent viscosity</title><author>Vynnycky, M. ; O’Brien, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-efe9dc352ca3e960400a7e4dc670247c0b61954adea118fa21e8e76697b476bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>Asymptotics</topic><topic>Buoyancy</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Mathematical analysis</topic><topic>Newtonian fluids</topic><topic>Slow flow</topic><topic>Temperature-dependent viscosity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vynnycky, M.</creatorcontrib><creatorcontrib>O’Brien, M.A.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vynnycky, M.</au><au>O’Brien, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow, steady ascent in a power-law fluid with temperature-dependent viscosity</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2013-05</date><risdate>2013</risdate><volume>195</volume><spage>9</spage><epage>18</epage><pages>9-18</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><abstract>► Complete asymptotic analysis (four regimes) for the ascent of a zero-traction sphere in a non-isothermal power law fluid (shear-thickening and shear-thinning). ► Closed-form expressions for the drag. ► Closed form expressions for the Nusselt number. ► Closed form expressions for the rise velocity.
In this paper, we consider the problem of a hot buoyant spherical body with a zero-traction surface ascending through a power-law fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ϵ. For mild viscosity variations, Levich’s classical result for an isoviscous Newtonian fluid is generalized; more severe viscosity variations lead to an involved four-regime asymptotic structure that has similarities with that found for a Newtonian fluid with temperature-dependent viscosity.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2012.12.001</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0257 |
ispartof | Journal of non-Newtonian fluid mechanics, 2013-05, Vol.195, p.9-18 |
issn | 0377-0257 1873-2631 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770373545 |
source | Elsevier ScienceDirect Journals |
subjects | Asymptotic properties Asymptotics Buoyancy Fluid dynamics Fluid flow Fluids Mathematical analysis Newtonian fluids Slow flow Temperature-dependent viscosity Viscosity |
title | Slow, steady ascent in a power-law fluid with temperature-dependent viscosity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow,%20steady%20ascent%20in%20a%20power-law%20fluid%20with%20temperature-dependent%20viscosity&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Vynnycky,%20M.&rft.date=2013-05&rft.volume=195&rft.spage=9&rft.epage=18&rft.pages=9-18&rft.issn=0377-0257&rft.eissn=1873-2631&rft_id=info:doi/10.1016/j.jnnfm.2012.12.001&rft_dat=%3Cproquest_cross%3E1770373545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448714637&rft_id=info:pmid/&rft_els_id=S0377025712002601&rfr_iscdi=true |