A higher order Sobolev-type inner product for orthogonal polynomials in several variables

We consider polynomials in several variables orthogonal with respect to a Sobolev-type inner product, obtained from adding a higher order gradient evaluated in a fixed point to a standard inner product. An expression for these polynomials in terms of the orthogonal family associated with the standar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2015-01, Vol.68 (1), p.35-46
Hauptverfasser: Dueñas, Herbert, Garza, Luis E., Piñar, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue 1
container_start_page 35
container_title Numerical algorithms
container_volume 68
creator Dueñas, Herbert
Garza, Luis E.
Piñar, Miguel
description We consider polynomials in several variables orthogonal with respect to a Sobolev-type inner product, obtained from adding a higher order gradient evaluated in a fixed point to a standard inner product. An expression for these polynomials in terms of the orthogonal family associated with the standard inner product is obtained. A particular case using polynomials in the unit ball is analyzed, and some asymptotic results are derived.
doi_str_mv 10.1007/s11075-014-9836-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770369293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918606392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-38867488c11bd0a7f7c60f7f275a3c34a6be2942476ec143e9dca4c34e26753b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RfG2yOZbiFxQ8qAdPIZudbbdsN2uyLe2_N2UFQfAyM8w87zDzInRNyR0lRN1HSonKMaEC64JLvD9BE5orhjWT-WmqCVWYcl2co4sY14QkFVMT9DnLVs1yBSHzoUrxzZe-hR0eDj1kTdelVh98tXVDVvsjNKz80ne2zXrfHjq_aWwbE5hF2EFI7Z0NjS1biJforE4zuPrJU_Tx-PA-f8aL16eX-WyBnaB6wLwopBJF4SgtK2JVrZwktaqZyi13XFhZAtOCCSXBUcFBV86KNAAmVc5LPkW3495059cW4mA2TXTQtrYDv42GKkW41EzzhN78Qdd-G9Iz0TBNC0kk1yxRdKRc8DEGqE0fmo0NB0OJOZptRrNNMtsczTb7pGGjJia2W0L43fy_6BuhjIJ-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918606392</pqid></control><display><type>article</type><title>A higher order Sobolev-type inner product for orthogonal polynomials in several variables</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dueñas, Herbert ; Garza, Luis E. ; Piñar, Miguel</creator><creatorcontrib>Dueñas, Herbert ; Garza, Luis E. ; Piñar, Miguel</creatorcontrib><description>We consider polynomials in several variables orthogonal with respect to a Sobolev-type inner product, obtained from adding a higher order gradient evaluated in a fixed point to a standard inner product. An expression for these polynomials in terms of the orthogonal family associated with the standard inner product is obtained. A particular case using polynomials in the unit ball is analyzed, and some asymptotic results are derived.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-014-9836-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Algorithms ; Asymptotic properties ; Computer Science ; Mathematical models ; Numeric Computing ; Numerical Analysis ; Original Paper ; Polynomials ; Theory of Computation</subject><ispartof>Numerical algorithms, 2015-01, Vol.68 (1), p.35-46</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-38867488c11bd0a7f7c60f7f275a3c34a6be2942476ec143e9dca4c34e26753b3</citedby><cites>FETCH-LOGICAL-c419t-38867488c11bd0a7f7c60f7f275a3c34a6be2942476ec143e9dca4c34e26753b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-014-9836-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-014-9836-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dueñas, Herbert</creatorcontrib><creatorcontrib>Garza, Luis E.</creatorcontrib><creatorcontrib>Piñar, Miguel</creatorcontrib><title>A higher order Sobolev-type inner product for orthogonal polynomials in several variables</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>We consider polynomials in several variables orthogonal with respect to a Sobolev-type inner product, obtained from adding a higher order gradient evaluated in a fixed point to a standard inner product. An expression for these polynomials in terms of the orthogonal family associated with the standard inner product is obtained. A particular case using polynomials in the unit ball is analyzed, and some asymptotic results are derived.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Computer Science</subject><subject>Mathematical models</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RfG2yOZbiFxQ8qAdPIZudbbdsN2uyLe2_N2UFQfAyM8w87zDzInRNyR0lRN1HSonKMaEC64JLvD9BE5orhjWT-WmqCVWYcl2co4sY14QkFVMT9DnLVs1yBSHzoUrxzZe-hR0eDj1kTdelVh98tXVDVvsjNKz80ne2zXrfHjq_aWwbE5hF2EFI7Z0NjS1biJforE4zuPrJU_Tx-PA-f8aL16eX-WyBnaB6wLwopBJF4SgtK2JVrZwktaqZyi13XFhZAtOCCSXBUcFBV86KNAAmVc5LPkW3495059cW4mA2TXTQtrYDv42GKkW41EzzhN78Qdd-G9Iz0TBNC0kk1yxRdKRc8DEGqE0fmo0NB0OJOZptRrNNMtsczTb7pGGjJia2W0L43fy_6BuhjIJ-</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Dueñas, Herbert</creator><creator>Garza, Luis E.</creator><creator>Piñar, Miguel</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150101</creationdate><title>A higher order Sobolev-type inner product for orthogonal polynomials in several variables</title><author>Dueñas, Herbert ; Garza, Luis E. ; Piñar, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-38867488c11bd0a7f7c60f7f275a3c34a6be2942476ec143e9dca4c34e26753b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Computer Science</topic><topic>Mathematical models</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dueñas, Herbert</creatorcontrib><creatorcontrib>Garza, Luis E.</creatorcontrib><creatorcontrib>Piñar, Miguel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dueñas, Herbert</au><au>Garza, Luis E.</au><au>Piñar, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A higher order Sobolev-type inner product for orthogonal polynomials in several variables</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>68</volume><issue>1</issue><spage>35</spage><epage>46</epage><pages>35-46</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>We consider polynomials in several variables orthogonal with respect to a Sobolev-type inner product, obtained from adding a higher order gradient evaluated in a fixed point to a standard inner product. An expression for these polynomials in terms of the orthogonal family associated with the standard inner product is obtained. A particular case using polynomials in the unit ball is analyzed, and some asymptotic results are derived.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11075-014-9836-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2015-01, Vol.68 (1), p.35-46
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_miscellaneous_1770369293
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algorithms
Asymptotic properties
Computer Science
Mathematical models
Numeric Computing
Numerical Analysis
Original Paper
Polynomials
Theory of Computation
title A higher order Sobolev-type inner product for orthogonal polynomials in several variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20higher%20order%20Sobolev-type%20inner%20product%20for%20orthogonal%20polynomials%20in%20several%20variables&rft.jtitle=Numerical%20algorithms&rft.au=Due%C3%B1as,%20Herbert&rft.date=2015-01-01&rft.volume=68&rft.issue=1&rft.spage=35&rft.epage=46&rft.pages=35-46&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-014-9836-x&rft_dat=%3Cproquest_cross%3E2918606392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918606392&rft_id=info:pmid/&rfr_iscdi=true