On the Exact Size of Tests of Treatment Effects in Multi-Arm Clinical Trials
Summary When testing treatment effects in multi‐arm clinical trials, the Bonferroni method or the method of Simes 1986) is used to adjust for the multiple comparisons. When control of the family‐wise error rate is required, these methods are combined with the close testing principle of Marcus et al....
Gespeichert in:
Veröffentlicht in: | Australian & New Zealand journal of statistics 2014-12, Vol.56 (4), p.359-369 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | 4 |
container_start_page | 359 |
container_title | Australian & New Zealand journal of statistics |
container_volume | 56 |
creator | Lloyd, Chris J. |
description | Summary
When testing treatment effects in multi‐arm clinical trials, the Bonferroni method or the method of Simes 1986) is used to adjust for the multiple comparisons. When control of the family‐wise error rate is required, these methods are combined with the close testing principle of Marcus et al. (1976). Under weak assumptions, the resulting p‐values all give rise to valid tests provided that the basic test used for each treatment is valid. However, standard tests can be far from valid, especially when the endpoint is binary and when sample sizes are unbalanced, as is common in multi‐arm clinical trials.This paper looks at the relationship between size deviations of the component test and size deviations of the multiple comparison test. The conclusion is that multiple comparison tests are as imperfect as the basic tests at nominal size α/m where m is the number of treatments. This, admittedly not unexpected, conclusion implies that these methods should only be used when the component test is very accurate at small nominal sizes. For binary end‐points, this suggests use of the parametric bootstrap test. All these conclusions are supported by a detailed numerical study. |
doi_str_mv | 10.1111/anzs.12089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770369079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770369079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3449-52aaaa1904974f687d3943fc60b8dddb155f3f762c7cac938ca246003edb9fd73</originalsourceid><addsrcrecordid>eNp9kE9PAjEQxRujiYhe_AR7NCaL7bbbbo-EIJogGMFguDSl28bq_tF2icCnt7Dq0bm8yeT3JjMPgEsEeyjUjax2vocSmPEj0EGEsjgjyctx6DHlMSIMn4Iz798gRARi2gHjaRU1rzoabqRqopnd6ag20Vz7xh8ap2VT6qqJhsZoFYa2ih7WRWPjviujQWErq2QROCsLfw5OTBB98aNd8Hw7nA_u4vF0dD_oj2OFCeFxmshQiEPCGTE0YznmBBtF4SrL83yF0tRgw2iimJKK40zJhFAIsc5X3OQMd8FVu_fD1Z_rcKsorVe6KGSl67UXiLHwHIeMB_S6RZWrvXfaiA9nS-m2AkGxj0zsIxOHyAKMWvjLFnr7Dyn6k-Xs1xO3HusbvfnzSPcuKMMsFYvJSEwelwtEcSKe8Ddv4Hzb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770369079</pqid></control><display><type>article</type><title>On the Exact Size of Tests of Treatment Effects in Multi-Arm Clinical Trials</title><source>Access via Wiley Online Library</source><creator>Lloyd, Chris J.</creator><creatorcontrib>Lloyd, Chris J.</creatorcontrib><description>Summary
When testing treatment effects in multi‐arm clinical trials, the Bonferroni method or the method of Simes 1986) is used to adjust for the multiple comparisons. When control of the family‐wise error rate is required, these methods are combined with the close testing principle of Marcus et al. (1976). Under weak assumptions, the resulting p‐values all give rise to valid tests provided that the basic test used for each treatment is valid. However, standard tests can be far from valid, especially when the endpoint is binary and when sample sizes are unbalanced, as is common in multi‐arm clinical trials.This paper looks at the relationship between size deviations of the component test and size deviations of the multiple comparison test. The conclusion is that multiple comparison tests are as imperfect as the basic tests at nominal size α/m where m is the number of treatments. This, admittedly not unexpected, conclusion implies that these methods should only be used when the component test is very accurate at small nominal sizes. For binary end‐points, this suggests use of the parametric bootstrap test. All these conclusions are supported by a detailed numerical study.</description><identifier>ISSN: 1369-1473</identifier><identifier>EISSN: 1467-842X</identifier><identifier>DOI: 10.1111/anzs.12089</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Australia ; Bonferroni test ; Deviation ; E+M test ; Medical research ; Medical services ; parametric bootstrap ; Samples ; Simes test ; Statistical analysis ; Statistics</subject><ispartof>Australian & New Zealand journal of statistics, 2014-12, Vol.56 (4), p.359-369</ispartof><rights>2014 Australian Statistical Publishing Association Inc. Published by Wiley Publishing Asia Pty Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3449-52aaaa1904974f687d3943fc60b8dddb155f3f762c7cac938ca246003edb9fd73</citedby><cites>FETCH-LOGICAL-c3449-52aaaa1904974f687d3943fc60b8dddb155f3f762c7cac938ca246003edb9fd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fanzs.12089$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fanzs.12089$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lloyd, Chris J.</creatorcontrib><title>On the Exact Size of Tests of Treatment Effects in Multi-Arm Clinical Trials</title><title>Australian & New Zealand journal of statistics</title><addtitle>Aust. N. Z. J. Stat</addtitle><description>Summary
When testing treatment effects in multi‐arm clinical trials, the Bonferroni method or the method of Simes 1986) is used to adjust for the multiple comparisons. When control of the family‐wise error rate is required, these methods are combined with the close testing principle of Marcus et al. (1976). Under weak assumptions, the resulting p‐values all give rise to valid tests provided that the basic test used for each treatment is valid. However, standard tests can be far from valid, especially when the endpoint is binary and when sample sizes are unbalanced, as is common in multi‐arm clinical trials.This paper looks at the relationship between size deviations of the component test and size deviations of the multiple comparison test. The conclusion is that multiple comparison tests are as imperfect as the basic tests at nominal size α/m where m is the number of treatments. This, admittedly not unexpected, conclusion implies that these methods should only be used when the component test is very accurate at small nominal sizes. For binary end‐points, this suggests use of the parametric bootstrap test. All these conclusions are supported by a detailed numerical study.</description><subject>Australia</subject><subject>Bonferroni test</subject><subject>Deviation</subject><subject>E+M test</subject><subject>Medical research</subject><subject>Medical services</subject><subject>parametric bootstrap</subject><subject>Samples</subject><subject>Simes test</subject><subject>Statistical analysis</subject><subject>Statistics</subject><issn>1369-1473</issn><issn>1467-842X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAjEQxRujiYhe_AR7NCaL7bbbbo-EIJogGMFguDSl28bq_tF2icCnt7Dq0bm8yeT3JjMPgEsEeyjUjax2vocSmPEj0EGEsjgjyctx6DHlMSIMn4Iz798gRARi2gHjaRU1rzoabqRqopnd6ag20Vz7xh8ap2VT6qqJhsZoFYa2ih7WRWPjviujQWErq2QROCsLfw5OTBB98aNd8Hw7nA_u4vF0dD_oj2OFCeFxmshQiEPCGTE0YznmBBtF4SrL83yF0tRgw2iimJKK40zJhFAIsc5X3OQMd8FVu_fD1Z_rcKsorVe6KGSl67UXiLHwHIeMB_S6RZWrvXfaiA9nS-m2AkGxj0zsIxOHyAKMWvjLFnr7Dyn6k-Xs1xO3HusbvfnzSPcuKMMsFYvJSEwelwtEcSKe8Ddv4Hzb</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Lloyd, Chris J.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201412</creationdate><title>On the Exact Size of Tests of Treatment Effects in Multi-Arm Clinical Trials</title><author>Lloyd, Chris J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3449-52aaaa1904974f687d3943fc60b8dddb155f3f762c7cac938ca246003edb9fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Australia</topic><topic>Bonferroni test</topic><topic>Deviation</topic><topic>E+M test</topic><topic>Medical research</topic><topic>Medical services</topic><topic>parametric bootstrap</topic><topic>Samples</topic><topic>Simes test</topic><topic>Statistical analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, Chris J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Australian & New Zealand journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, Chris J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Exact Size of Tests of Treatment Effects in Multi-Arm Clinical Trials</atitle><jtitle>Australian & New Zealand journal of statistics</jtitle><addtitle>Aust. N. Z. J. Stat</addtitle><date>2014-12</date><risdate>2014</risdate><volume>56</volume><issue>4</issue><spage>359</spage><epage>369</epage><pages>359-369</pages><issn>1369-1473</issn><eissn>1467-842X</eissn><abstract>Summary
When testing treatment effects in multi‐arm clinical trials, the Bonferroni method or the method of Simes 1986) is used to adjust for the multiple comparisons. When control of the family‐wise error rate is required, these methods are combined with the close testing principle of Marcus et al. (1976). Under weak assumptions, the resulting p‐values all give rise to valid tests provided that the basic test used for each treatment is valid. However, standard tests can be far from valid, especially when the endpoint is binary and when sample sizes are unbalanced, as is common in multi‐arm clinical trials.This paper looks at the relationship between size deviations of the component test and size deviations of the multiple comparison test. The conclusion is that multiple comparison tests are as imperfect as the basic tests at nominal size α/m where m is the number of treatments. This, admittedly not unexpected, conclusion implies that these methods should only be used when the component test is very accurate at small nominal sizes. For binary end‐points, this suggests use of the parametric bootstrap test. All these conclusions are supported by a detailed numerical study.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1111/anzs.12089</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-1473 |
ispartof | Australian & New Zealand journal of statistics, 2014-12, Vol.56 (4), p.359-369 |
issn | 1369-1473 1467-842X |
language | eng |
recordid | cdi_proquest_miscellaneous_1770369079 |
source | Access via Wiley Online Library |
subjects | Australia Bonferroni test Deviation E+M test Medical research Medical services parametric bootstrap Samples Simes test Statistical analysis Statistics |
title | On the Exact Size of Tests of Treatment Effects in Multi-Arm Clinical Trials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Exact%20Size%20of%20Tests%20of%20Treatment%20Effects%20in%20Multi-Arm%20Clinical%20Trials&rft.jtitle=Australian%20&%20New%20Zealand%20journal%20of%20statistics&rft.au=Lloyd,%20Chris%20J.&rft.date=2014-12&rft.volume=56&rft.issue=4&rft.spage=359&rft.epage=369&rft.pages=359-369&rft.issn=1369-1473&rft.eissn=1467-842X&rft_id=info:doi/10.1111/anzs.12089&rft_dat=%3Cproquest_cross%3E1770369079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770369079&rft_id=info:pmid/&rfr_iscdi=true |