On the Exact Size of Tests of Treatment Effects in Multi-Arm Clinical Trials

Summary When testing treatment effects in multi‐arm clinical trials, the Bonferroni method or the method of Simes 1986) is used to adjust for the multiple comparisons. When control of the family‐wise error rate is required, these methods are combined with the close testing principle of Marcus et al....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Australian & New Zealand journal of statistics 2014-12, Vol.56 (4), p.359-369
1. Verfasser: Lloyd, Chris J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue 4
container_start_page 359
container_title Australian & New Zealand journal of statistics
container_volume 56
creator Lloyd, Chris J.
description Summary When testing treatment effects in multi‐arm clinical trials, the Bonferroni method or the method of Simes 1986) is used to adjust for the multiple comparisons. When control of the family‐wise error rate is required, these methods are combined with the close testing principle of Marcus et al. (1976). Under weak assumptions, the resulting p‐values all give rise to valid tests provided that the basic test used for each treatment is valid. However, standard tests can be far from valid, especially when the endpoint is binary and when sample sizes are unbalanced, as is common in multi‐arm clinical trials.This paper looks at the relationship between size deviations of the component test and size deviations of the multiple comparison test. The conclusion is that multiple comparison tests are as imperfect as the basic tests at nominal size α/m where m is the number of treatments. This, admittedly not unexpected, conclusion implies that these methods should only be used when the component test is very accurate at small nominal sizes. For binary end‐points, this suggests use of the parametric bootstrap test. All these conclusions are supported by a detailed numerical study.
doi_str_mv 10.1111/anzs.12089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770369079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770369079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3449-52aaaa1904974f687d3943fc60b8dddb155f3f762c7cac938ca246003edb9fd73</originalsourceid><addsrcrecordid>eNp9kE9PAjEQxRujiYhe_AR7NCaL7bbbbo-EIJogGMFguDSl28bq_tF2icCnt7Dq0bm8yeT3JjMPgEsEeyjUjax2vocSmPEj0EGEsjgjyctx6DHlMSIMn4Iz798gRARi2gHjaRU1rzoabqRqopnd6ag20Vz7xh8ap2VT6qqJhsZoFYa2ih7WRWPjviujQWErq2QROCsLfw5OTBB98aNd8Hw7nA_u4vF0dD_oj2OFCeFxmshQiEPCGTE0YznmBBtF4SrL83yF0tRgw2iimJKK40zJhFAIsc5X3OQMd8FVu_fD1Z_rcKsorVe6KGSl67UXiLHwHIeMB_S6RZWrvXfaiA9nS-m2AkGxj0zsIxOHyAKMWvjLFnr7Dyn6k-Xs1xO3HusbvfnzSPcuKMMsFYvJSEwelwtEcSKe8Ddv4Hzb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770369079</pqid></control><display><type>article</type><title>On the Exact Size of Tests of Treatment Effects in Multi-Arm Clinical Trials</title><source>Access via Wiley Online Library</source><creator>Lloyd, Chris J.</creator><creatorcontrib>Lloyd, Chris J.</creatorcontrib><description>Summary When testing treatment effects in multi‐arm clinical trials, the Bonferroni method or the method of Simes 1986) is used to adjust for the multiple comparisons. When control of the family‐wise error rate is required, these methods are combined with the close testing principle of Marcus et al. (1976). Under weak assumptions, the resulting p‐values all give rise to valid tests provided that the basic test used for each treatment is valid. However, standard tests can be far from valid, especially when the endpoint is binary and when sample sizes are unbalanced, as is common in multi‐arm clinical trials.This paper looks at the relationship between size deviations of the component test and size deviations of the multiple comparison test. The conclusion is that multiple comparison tests are as imperfect as the basic tests at nominal size α/m where m is the number of treatments. This, admittedly not unexpected, conclusion implies that these methods should only be used when the component test is very accurate at small nominal sizes. For binary end‐points, this suggests use of the parametric bootstrap test. All these conclusions are supported by a detailed numerical study.</description><identifier>ISSN: 1369-1473</identifier><identifier>EISSN: 1467-842X</identifier><identifier>DOI: 10.1111/anzs.12089</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Australia ; Bonferroni test ; Deviation ; E+M test ; Medical research ; Medical services ; parametric bootstrap ; Samples ; Simes test ; Statistical analysis ; Statistics</subject><ispartof>Australian &amp; New Zealand journal of statistics, 2014-12, Vol.56 (4), p.359-369</ispartof><rights>2014 Australian Statistical Publishing Association Inc. Published by Wiley Publishing Asia Pty Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3449-52aaaa1904974f687d3943fc60b8dddb155f3f762c7cac938ca246003edb9fd73</citedby><cites>FETCH-LOGICAL-c3449-52aaaa1904974f687d3943fc60b8dddb155f3f762c7cac938ca246003edb9fd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fanzs.12089$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fanzs.12089$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lloyd, Chris J.</creatorcontrib><title>On the Exact Size of Tests of Treatment Effects in Multi-Arm Clinical Trials</title><title>Australian &amp; New Zealand journal of statistics</title><addtitle>Aust. N. Z. J. Stat</addtitle><description>Summary When testing treatment effects in multi‐arm clinical trials, the Bonferroni method or the method of Simes 1986) is used to adjust for the multiple comparisons. When control of the family‐wise error rate is required, these methods are combined with the close testing principle of Marcus et al. (1976). Under weak assumptions, the resulting p‐values all give rise to valid tests provided that the basic test used for each treatment is valid. However, standard tests can be far from valid, especially when the endpoint is binary and when sample sizes are unbalanced, as is common in multi‐arm clinical trials.This paper looks at the relationship between size deviations of the component test and size deviations of the multiple comparison test. The conclusion is that multiple comparison tests are as imperfect as the basic tests at nominal size α/m where m is the number of treatments. This, admittedly not unexpected, conclusion implies that these methods should only be used when the component test is very accurate at small nominal sizes. For binary end‐points, this suggests use of the parametric bootstrap test. All these conclusions are supported by a detailed numerical study.</description><subject>Australia</subject><subject>Bonferroni test</subject><subject>Deviation</subject><subject>E+M test</subject><subject>Medical research</subject><subject>Medical services</subject><subject>parametric bootstrap</subject><subject>Samples</subject><subject>Simes test</subject><subject>Statistical analysis</subject><subject>Statistics</subject><issn>1369-1473</issn><issn>1467-842X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAjEQxRujiYhe_AR7NCaL7bbbbo-EIJogGMFguDSl28bq_tF2icCnt7Dq0bm8yeT3JjMPgEsEeyjUjax2vocSmPEj0EGEsjgjyctx6DHlMSIMn4Iz798gRARi2gHjaRU1rzoabqRqopnd6ag20Vz7xh8ap2VT6qqJhsZoFYa2ih7WRWPjviujQWErq2QROCsLfw5OTBB98aNd8Hw7nA_u4vF0dD_oj2OFCeFxmshQiEPCGTE0YznmBBtF4SrL83yF0tRgw2iimJKK40zJhFAIsc5X3OQMd8FVu_fD1Z_rcKsorVe6KGSl67UXiLHwHIeMB_S6RZWrvXfaiA9nS-m2AkGxj0zsIxOHyAKMWvjLFnr7Dyn6k-Xs1xO3HusbvfnzSPcuKMMsFYvJSEwelwtEcSKe8Ddv4Hzb</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Lloyd, Chris J.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201412</creationdate><title>On the Exact Size of Tests of Treatment Effects in Multi-Arm Clinical Trials</title><author>Lloyd, Chris J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3449-52aaaa1904974f687d3943fc60b8dddb155f3f762c7cac938ca246003edb9fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Australia</topic><topic>Bonferroni test</topic><topic>Deviation</topic><topic>E+M test</topic><topic>Medical research</topic><topic>Medical services</topic><topic>parametric bootstrap</topic><topic>Samples</topic><topic>Simes test</topic><topic>Statistical analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, Chris J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Australian &amp; New Zealand journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, Chris J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Exact Size of Tests of Treatment Effects in Multi-Arm Clinical Trials</atitle><jtitle>Australian &amp; New Zealand journal of statistics</jtitle><addtitle>Aust. N. Z. J. Stat</addtitle><date>2014-12</date><risdate>2014</risdate><volume>56</volume><issue>4</issue><spage>359</spage><epage>369</epage><pages>359-369</pages><issn>1369-1473</issn><eissn>1467-842X</eissn><abstract>Summary When testing treatment effects in multi‐arm clinical trials, the Bonferroni method or the method of Simes 1986) is used to adjust for the multiple comparisons. When control of the family‐wise error rate is required, these methods are combined with the close testing principle of Marcus et al. (1976). Under weak assumptions, the resulting p‐values all give rise to valid tests provided that the basic test used for each treatment is valid. However, standard tests can be far from valid, especially when the endpoint is binary and when sample sizes are unbalanced, as is common in multi‐arm clinical trials.This paper looks at the relationship between size deviations of the component test and size deviations of the multiple comparison test. The conclusion is that multiple comparison tests are as imperfect as the basic tests at nominal size α/m where m is the number of treatments. This, admittedly not unexpected, conclusion implies that these methods should only be used when the component test is very accurate at small nominal sizes. For binary end‐points, this suggests use of the parametric bootstrap test. All these conclusions are supported by a detailed numerical study.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1111/anzs.12089</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1369-1473
ispartof Australian & New Zealand journal of statistics, 2014-12, Vol.56 (4), p.359-369
issn 1369-1473
1467-842X
language eng
recordid cdi_proquest_miscellaneous_1770369079
source Access via Wiley Online Library
subjects Australia
Bonferroni test
Deviation
E+M test
Medical research
Medical services
parametric bootstrap
Samples
Simes test
Statistical analysis
Statistics
title On the Exact Size of Tests of Treatment Effects in Multi-Arm Clinical Trials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Exact%20Size%20of%20Tests%20of%20Treatment%20Effects%20in%20Multi-Arm%20Clinical%20Trials&rft.jtitle=Australian%20&%20New%20Zealand%20journal%20of%20statistics&rft.au=Lloyd,%20Chris%20J.&rft.date=2014-12&rft.volume=56&rft.issue=4&rft.spage=359&rft.epage=369&rft.pages=359-369&rft.issn=1369-1473&rft.eissn=1467-842X&rft_id=info:doi/10.1111/anzs.12089&rft_dat=%3Cproquest_cross%3E1770369079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770369079&rft_id=info:pmid/&rfr_iscdi=true