Subelliptic Peter–Weyl and Plancherel theorems on compact, connected, semisimple Lie groups
We will study the connections between the elliptic and subelliptic versions of the Peter–Weyl and Plancherel theorems, in the case when the sub-Riemannian structure is generated naturally by the choice of a Cartan subalgebra. Along the way we will introduce and study the subelliptic Casimir operator...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2015-10, Vol.126, p.131-142 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142 |
---|---|
container_issue | |
container_start_page | 131 |
container_title | Nonlinear analysis |
container_volume | 126 |
creator | Domokos, András |
description | We will study the connections between the elliptic and subelliptic versions of the Peter–Weyl and Plancherel theorems, in the case when the sub-Riemannian structure is generated naturally by the choice of a Cartan subalgebra. Along the way we will introduce and study the subelliptic Casimir operator associated to the subelliptic Laplacian. |
doi_str_mv | 10.1016/j.na.2015.04.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770367143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X15001236</els_id><sourcerecordid>1770367143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-871aaa6e8d31390aac6c2021802538129d5dd0203c3cc1fe174ad306a0a6753a3</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVJoZuPe4469hC7M5ZteXsrIR-FhQbSkF6CmEizjRZbdiRvILf-h_zD_JJq2V57mjm8zzDvI8QpQomA7ZdNGaisAJsS6hIQPogFdloVTYXNgViAaquiqdtfn8RhShsAQK3ahXi43T5y3_tp9lbe8Mzx_c_bPb_2koKTNz0F-8SRezk_8Rh5SHIM0o7DRHY-y0sIbGd2ZzLx4JMfpp7lyrP8HcftlI7FxzX1iU_-zSNxd3nx8_y6WP24-n7-bVVYtdRz0WkkopY7p1Atgci2toIKO6ga1WG1dI1zUIGyylpcM-qanIKWgFrdKFJH4vP-7hTH5y2n2eRnbO5FgcdtMqh1FqCxVjkK-6iNY0qR12aKfqD4ahDMzqTZmEBmZ9JAbbLJjHzdI5wrvHiOJlnPwbLzMbc3bvT_h_8CL_V70w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770367143</pqid></control><display><type>article</type><title>Subelliptic Peter–Weyl and Plancherel theorems on compact, connected, semisimple Lie groups</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Domokos, András</creator><creatorcontrib>Domokos, András</creatorcontrib><description>We will study the connections between the elliptic and subelliptic versions of the Peter–Weyl and Plancherel theorems, in the case when the sub-Riemannian structure is generated naturally by the choice of a Cartan subalgebra. Along the way we will introduce and study the subelliptic Casimir operator associated to the subelliptic Laplacian.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2015.04.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Joints ; Lie groups ; Nonlinearity ; Operators ; Semisimple Lie groups ; Sub-Riemannian geometry ; Subelliptic Laplacian ; Theorems</subject><ispartof>Nonlinear analysis, 2015-10, Vol.126, p.131-142</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-871aaa6e8d31390aac6c2021802538129d5dd0203c3cc1fe174ad306a0a6753a3</citedby><cites>FETCH-LOGICAL-c397t-871aaa6e8d31390aac6c2021802538129d5dd0203c3cc1fe174ad306a0a6753a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X15001236$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Domokos, András</creatorcontrib><title>Subelliptic Peter–Weyl and Plancherel theorems on compact, connected, semisimple Lie groups</title><title>Nonlinear analysis</title><description>We will study the connections between the elliptic and subelliptic versions of the Peter–Weyl and Plancherel theorems, in the case when the sub-Riemannian structure is generated naturally by the choice of a Cartan subalgebra. Along the way we will introduce and study the subelliptic Casimir operator associated to the subelliptic Laplacian.</description><subject>Joints</subject><subject>Lie groups</subject><subject>Nonlinearity</subject><subject>Operators</subject><subject>Semisimple Lie groups</subject><subject>Sub-Riemannian geometry</subject><subject>Subelliptic Laplacian</subject><subject>Theorems</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1r3DAQhkVJoZuPe4469hC7M5ZteXsrIR-FhQbSkF6CmEizjRZbdiRvILf-h_zD_JJq2V57mjm8zzDvI8QpQomA7ZdNGaisAJsS6hIQPogFdloVTYXNgViAaquiqdtfn8RhShsAQK3ahXi43T5y3_tp9lbe8Mzx_c_bPb_2koKTNz0F-8SRezk_8Rh5SHIM0o7DRHY-y0sIbGd2ZzLx4JMfpp7lyrP8HcftlI7FxzX1iU_-zSNxd3nx8_y6WP24-n7-bVVYtdRz0WkkopY7p1Atgci2toIKO6ga1WG1dI1zUIGyylpcM-qanIKWgFrdKFJH4vP-7hTH5y2n2eRnbO5FgcdtMqh1FqCxVjkK-6iNY0qR12aKfqD4ahDMzqTZmEBmZ9JAbbLJjHzdI5wrvHiOJlnPwbLzMbc3bvT_h_8CL_V70w</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Domokos, András</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151001</creationdate><title>Subelliptic Peter–Weyl and Plancherel theorems on compact, connected, semisimple Lie groups</title><author>Domokos, András</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-871aaa6e8d31390aac6c2021802538129d5dd0203c3cc1fe174ad306a0a6753a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Joints</topic><topic>Lie groups</topic><topic>Nonlinearity</topic><topic>Operators</topic><topic>Semisimple Lie groups</topic><topic>Sub-Riemannian geometry</topic><topic>Subelliptic Laplacian</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domokos, András</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domokos, András</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subelliptic Peter–Weyl and Plancherel theorems on compact, connected, semisimple Lie groups</atitle><jtitle>Nonlinear analysis</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>126</volume><spage>131</spage><epage>142</epage><pages>131-142</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We will study the connections between the elliptic and subelliptic versions of the Peter–Weyl and Plancherel theorems, in the case when the sub-Riemannian structure is generated naturally by the choice of a Cartan subalgebra. Along the way we will introduce and study the subelliptic Casimir operator associated to the subelliptic Laplacian.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2015.04.010</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2015-10, Vol.126, p.131-142 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770367143 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Joints Lie groups Nonlinearity Operators Semisimple Lie groups Sub-Riemannian geometry Subelliptic Laplacian Theorems |
title | Subelliptic Peter–Weyl and Plancherel theorems on compact, connected, semisimple Lie groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subelliptic%20Peter%E2%80%93Weyl%20and%20Plancherel%20theorems%20on%20compact,%20connected,%20semisimple%20Lie%20groups&rft.jtitle=Nonlinear%20analysis&rft.au=Domokos,%20Andr%C3%A1s&rft.date=2015-10-01&rft.volume=126&rft.spage=131&rft.epage=142&rft.pages=131-142&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2015.04.010&rft_dat=%3Cproquest_cross%3E1770367143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770367143&rft_id=info:pmid/&rft_els_id=S0362546X15001236&rfr_iscdi=true |