Subelliptic Peter–Weyl and Plancherel theorems on compact, connected, semisimple Lie groups

We will study the connections between the elliptic and subelliptic versions of the Peter–Weyl and Plancherel theorems, in the case when the sub-Riemannian structure is generated naturally by the choice of a Cartan subalgebra. Along the way we will introduce and study the subelliptic Casimir operator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2015-10, Vol.126, p.131-142
1. Verfasser: Domokos, András
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue
container_start_page 131
container_title Nonlinear analysis
container_volume 126
creator Domokos, András
description We will study the connections between the elliptic and subelliptic versions of the Peter–Weyl and Plancherel theorems, in the case when the sub-Riemannian structure is generated naturally by the choice of a Cartan subalgebra. Along the way we will introduce and study the subelliptic Casimir operator associated to the subelliptic Laplacian.
doi_str_mv 10.1016/j.na.2015.04.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770367143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X15001236</els_id><sourcerecordid>1770367143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-871aaa6e8d31390aac6c2021802538129d5dd0203c3cc1fe174ad306a0a6753a3</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVJoZuPe4469hC7M5ZteXsrIR-FhQbSkF6CmEizjRZbdiRvILf-h_zD_JJq2V57mjm8zzDvI8QpQomA7ZdNGaisAJsS6hIQPogFdloVTYXNgViAaquiqdtfn8RhShsAQK3ahXi43T5y3_tp9lbe8Mzx_c_bPb_2koKTNz0F-8SRezk_8Rh5SHIM0o7DRHY-y0sIbGd2ZzLx4JMfpp7lyrP8HcftlI7FxzX1iU_-zSNxd3nx8_y6WP24-n7-bVVYtdRz0WkkopY7p1Atgci2toIKO6ga1WG1dI1zUIGyylpcM-qanIKWgFrdKFJH4vP-7hTH5y2n2eRnbO5FgcdtMqh1FqCxVjkK-6iNY0qR12aKfqD4ahDMzqTZmEBmZ9JAbbLJjHzdI5wrvHiOJlnPwbLzMbc3bvT_h_8CL_V70w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770367143</pqid></control><display><type>article</type><title>Subelliptic Peter–Weyl and Plancherel theorems on compact, connected, semisimple Lie groups</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Domokos, András</creator><creatorcontrib>Domokos, András</creatorcontrib><description>We will study the connections between the elliptic and subelliptic versions of the Peter–Weyl and Plancherel theorems, in the case when the sub-Riemannian structure is generated naturally by the choice of a Cartan subalgebra. Along the way we will introduce and study the subelliptic Casimir operator associated to the subelliptic Laplacian.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2015.04.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Joints ; Lie groups ; Nonlinearity ; Operators ; Semisimple Lie groups ; Sub-Riemannian geometry ; Subelliptic Laplacian ; Theorems</subject><ispartof>Nonlinear analysis, 2015-10, Vol.126, p.131-142</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-871aaa6e8d31390aac6c2021802538129d5dd0203c3cc1fe174ad306a0a6753a3</citedby><cites>FETCH-LOGICAL-c397t-871aaa6e8d31390aac6c2021802538129d5dd0203c3cc1fe174ad306a0a6753a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X15001236$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Domokos, András</creatorcontrib><title>Subelliptic Peter–Weyl and Plancherel theorems on compact, connected, semisimple Lie groups</title><title>Nonlinear analysis</title><description>We will study the connections between the elliptic and subelliptic versions of the Peter–Weyl and Plancherel theorems, in the case when the sub-Riemannian structure is generated naturally by the choice of a Cartan subalgebra. Along the way we will introduce and study the subelliptic Casimir operator associated to the subelliptic Laplacian.</description><subject>Joints</subject><subject>Lie groups</subject><subject>Nonlinearity</subject><subject>Operators</subject><subject>Semisimple Lie groups</subject><subject>Sub-Riemannian geometry</subject><subject>Subelliptic Laplacian</subject><subject>Theorems</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1r3DAQhkVJoZuPe4469hC7M5ZteXsrIR-FhQbSkF6CmEizjRZbdiRvILf-h_zD_JJq2V57mjm8zzDvI8QpQomA7ZdNGaisAJsS6hIQPogFdloVTYXNgViAaquiqdtfn8RhShsAQK3ahXi43T5y3_tp9lbe8Mzx_c_bPb_2koKTNz0F-8SRezk_8Rh5SHIM0o7DRHY-y0sIbGd2ZzLx4JMfpp7lyrP8HcftlI7FxzX1iU_-zSNxd3nx8_y6WP24-n7-bVVYtdRz0WkkopY7p1Atgci2toIKO6ga1WG1dI1zUIGyylpcM-qanIKWgFrdKFJH4vP-7hTH5y2n2eRnbO5FgcdtMqh1FqCxVjkK-6iNY0qR12aKfqD4ahDMzqTZmEBmZ9JAbbLJjHzdI5wrvHiOJlnPwbLzMbc3bvT_h_8CL_V70w</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Domokos, András</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151001</creationdate><title>Subelliptic Peter–Weyl and Plancherel theorems on compact, connected, semisimple Lie groups</title><author>Domokos, András</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-871aaa6e8d31390aac6c2021802538129d5dd0203c3cc1fe174ad306a0a6753a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Joints</topic><topic>Lie groups</topic><topic>Nonlinearity</topic><topic>Operators</topic><topic>Semisimple Lie groups</topic><topic>Sub-Riemannian geometry</topic><topic>Subelliptic Laplacian</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domokos, András</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domokos, András</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subelliptic Peter–Weyl and Plancherel theorems on compact, connected, semisimple Lie groups</atitle><jtitle>Nonlinear analysis</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>126</volume><spage>131</spage><epage>142</epage><pages>131-142</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We will study the connections between the elliptic and subelliptic versions of the Peter–Weyl and Plancherel theorems, in the case when the sub-Riemannian structure is generated naturally by the choice of a Cartan subalgebra. Along the way we will introduce and study the subelliptic Casimir operator associated to the subelliptic Laplacian.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2015.04.010</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2015-10, Vol.126, p.131-142
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1770367143
source Elsevier ScienceDirect Journals Complete
subjects Joints
Lie groups
Nonlinearity
Operators
Semisimple Lie groups
Sub-Riemannian geometry
Subelliptic Laplacian
Theorems
title Subelliptic Peter–Weyl and Plancherel theorems on compact, connected, semisimple Lie groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subelliptic%20Peter%E2%80%93Weyl%20and%20Plancherel%20theorems%20on%20compact,%20connected,%20semisimple%20Lie%20groups&rft.jtitle=Nonlinear%20analysis&rft.au=Domokos,%20Andr%C3%A1s&rft.date=2015-10-01&rft.volume=126&rft.spage=131&rft.epage=142&rft.pages=131-142&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2015.04.010&rft_dat=%3Cproquest_cross%3E1770367143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770367143&rft_id=info:pmid/&rft_els_id=S0362546X15001236&rfr_iscdi=true