Nasal pressure recordings for automatic snoring detection
This study presents a rule-based method for automated, real-time snoring detection using nasal pressure recordings during overnight sleep. Although nasal pressure recordings provide information regarding nocturnal breathing abnormalities in a polysomnography (PSG) study or continuous positive airway...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2015-11, Vol.53 (11), p.1103-1111 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1111 |
---|---|
container_issue | 11 |
container_start_page | 1103 |
container_title | Medical & biological engineering & computing |
container_volume | 53 |
creator | Lee, Hyo-Ki Kim, Hojoong Lee, Kyoung-Joung |
description | This study presents a rule-based method for automated, real-time snoring detection using nasal pressure recordings during overnight sleep. Although nasal pressure recordings provide information regarding nocturnal breathing abnormalities in a polysomnography (PSG) study or continuous positive airway pressure (CPAP) system, an objective assessment of snoring detection using these nasal pressure recordings has not yet been reported in the literature. Nasal pressure recordings were obtained from 55 patients with obstructive sleep apnea. The PSG data were also recorded simultaneously to evaluate the proposed method. This rule-based method for automatic, real-time snoring detection employed preprocessing, short-time energy and the central difference method. Using this methodology, a sensitivity of 85.4 % and a positive predictive value of 92.0 % were achieved in all patients. Therefore, we concluded that the proposed method is a simple, portable and cost-effective tool for real-time snoring detection in PSG and CPAP systems that does not require acoustic analysis using a microphone. |
doi_str_mv | 10.1007/s11517-015-1388-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770365042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735922263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-466ec7bd5b1f679dc0d5b120b13e9e7198b2b133f38431bce3fe00e14cb0a4053</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVp6W42_QG9FEMvvTiZ0YclHcOSNIEluTRnYcvj4mXX2kj2If--MrstIVDYkwbp0TsaPYx9RbhCAH2dEBXqElCVKIwp-Qe2RC2xBCnlR7YElJBP0SzYRUpbAI6Ky89swSthORpcMvtYp3pXHCKlNEUqIvkQ2374nYouxKKexrCvx94XaQgxbxctjeTHPgyX7FNX7xJ9Oa0r9nx3-2t9X26efj6sbzalV9qMpawq8rppVYNdpW3rYS45NCjIkkZrGp5r0QkjBTaeREcAhNI3UEtQYsV-HHMPMbxMlEa375On3a4eKEzJodYgKgWSn4EKZTnP05-BciukBTAZ_f4O3YYpDnnmmTIKtEWZKTxSPoaUInXuEPt9HV8dgpttuaMtl2252Zab3_vtlDw1e2r_3firJwP8CKTD_PkU37T-b-ofgZKdEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728507914</pqid></control><display><type>article</type><title>Nasal pressure recordings for automatic snoring detection</title><source>MEDLINE</source><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Hyo-Ki ; Kim, Hojoong ; Lee, Kyoung-Joung</creator><creatorcontrib>Lee, Hyo-Ki ; Kim, Hojoong ; Lee, Kyoung-Joung</creatorcontrib><description>This study presents a rule-based method for automated, real-time snoring detection using nasal pressure recordings during overnight sleep. Although nasal pressure recordings provide information regarding nocturnal breathing abnormalities in a polysomnography (PSG) study or continuous positive airway pressure (CPAP) system, an objective assessment of snoring detection using these nasal pressure recordings has not yet been reported in the literature. Nasal pressure recordings were obtained from 55 patients with obstructive sleep apnea. The PSG data were also recorded simultaneously to evaluate the proposed method. This rule-based method for automatic, real-time snoring detection employed preprocessing, short-time energy and the central difference method. Using this methodology, a sensitivity of 85.4 % and a positive predictive value of 92.0 % were achieved in all patients. Therefore, we concluded that the proposed method is a simple, portable and cost-effective tool for real-time snoring detection in PSG and CPAP systems that does not require acoustic analysis using a microphone.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-015-1388-2</identifier><identifier>PMID: 26392181</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustics ; Aged ; Algorithms ; Analysis ; Assessments ; Automation ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Body mass index ; Computer Applications ; Continuous positive airway pressure ; Cost analysis ; Female ; Human Physiology ; Humans ; Imaging ; Male ; Medical diagnosis ; Microphones ; Middle Aged ; Nose ; Nose - physiology ; Original Article ; Patients ; Polysomnography - methods ; Pressure ; Radiology ; Real time ; Recording ; Respiration ; Sensitivity and Specificity ; Sensors ; Signal Processing, Computer-Assisted ; Sleep ; Sleep apnea ; Sleep deprivation ; Sleep disorders ; Snoring - diagnosis ; Snoring - physiopathology ; Software ; Studies</subject><ispartof>Medical & biological engineering & computing, 2015-11, Vol.53 (11), p.1103-1111</ispartof><rights>International Federation for Medical and Biological Engineering 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-466ec7bd5b1f679dc0d5b120b13e9e7198b2b133f38431bce3fe00e14cb0a4053</citedby><cites>FETCH-LOGICAL-c578t-466ec7bd5b1f679dc0d5b120b13e9e7198b2b133f38431bce3fe00e14cb0a4053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-015-1388-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-015-1388-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26392181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hyo-Ki</creatorcontrib><creatorcontrib>Kim, Hojoong</creatorcontrib><creatorcontrib>Lee, Kyoung-Joung</creatorcontrib><title>Nasal pressure recordings for automatic snoring detection</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>This study presents a rule-based method for automated, real-time snoring detection using nasal pressure recordings during overnight sleep. Although nasal pressure recordings provide information regarding nocturnal breathing abnormalities in a polysomnography (PSG) study or continuous positive airway pressure (CPAP) system, an objective assessment of snoring detection using these nasal pressure recordings has not yet been reported in the literature. Nasal pressure recordings were obtained from 55 patients with obstructive sleep apnea. The PSG data were also recorded simultaneously to evaluate the proposed method. This rule-based method for automatic, real-time snoring detection employed preprocessing, short-time energy and the central difference method. Using this methodology, a sensitivity of 85.4 % and a positive predictive value of 92.0 % were achieved in all patients. Therefore, we concluded that the proposed method is a simple, portable and cost-effective tool for real-time snoring detection in PSG and CPAP systems that does not require acoustic analysis using a microphone.</description><subject>Acoustics</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Assessments</subject><subject>Automation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Body mass index</subject><subject>Computer Applications</subject><subject>Continuous positive airway pressure</subject><subject>Cost analysis</subject><subject>Female</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Imaging</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Microphones</subject><subject>Middle Aged</subject><subject>Nose</subject><subject>Nose - physiology</subject><subject>Original Article</subject><subject>Patients</subject><subject>Polysomnography - methods</subject><subject>Pressure</subject><subject>Radiology</subject><subject>Real time</subject><subject>Recording</subject><subject>Respiration</subject><subject>Sensitivity and Specificity</subject><subject>Sensors</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sleep</subject><subject>Sleep apnea</subject><subject>Sleep deprivation</subject><subject>Sleep disorders</subject><subject>Snoring - diagnosis</subject><subject>Snoring - physiopathology</subject><subject>Software</subject><subject>Studies</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1r3DAQhkVp6W42_QG9FEMvvTiZ0YclHcOSNIEluTRnYcvj4mXX2kj2If--MrstIVDYkwbp0TsaPYx9RbhCAH2dEBXqElCVKIwp-Qe2RC2xBCnlR7YElJBP0SzYRUpbAI6Ky89swSthORpcMvtYp3pXHCKlNEUqIvkQ2374nYouxKKexrCvx94XaQgxbxctjeTHPgyX7FNX7xJ9Oa0r9nx3-2t9X26efj6sbzalV9qMpawq8rppVYNdpW3rYS45NCjIkkZrGp5r0QkjBTaeREcAhNI3UEtQYsV-HHMPMbxMlEa375On3a4eKEzJodYgKgWSn4EKZTnP05-BciukBTAZ_f4O3YYpDnnmmTIKtEWZKTxSPoaUInXuEPt9HV8dgpttuaMtl2252Zab3_vtlDw1e2r_3firJwP8CKTD_PkU37T-b-ofgZKdEA</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Lee, Hyo-Ki</creator><creator>Kim, Hojoong</creator><creator>Lee, Kyoung-Joung</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20151101</creationdate><title>Nasal pressure recordings for automatic snoring detection</title><author>Lee, Hyo-Ki ; Kim, Hojoong ; Lee, Kyoung-Joung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-466ec7bd5b1f679dc0d5b120b13e9e7198b2b133f38431bce3fe00e14cb0a4053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustics</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Assessments</topic><topic>Automation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Body mass index</topic><topic>Computer Applications</topic><topic>Continuous positive airway pressure</topic><topic>Cost analysis</topic><topic>Female</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Imaging</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Microphones</topic><topic>Middle Aged</topic><topic>Nose</topic><topic>Nose - physiology</topic><topic>Original Article</topic><topic>Patients</topic><topic>Polysomnography - methods</topic><topic>Pressure</topic><topic>Radiology</topic><topic>Real time</topic><topic>Recording</topic><topic>Respiration</topic><topic>Sensitivity and Specificity</topic><topic>Sensors</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sleep</topic><topic>Sleep apnea</topic><topic>Sleep deprivation</topic><topic>Sleep disorders</topic><topic>Snoring - diagnosis</topic><topic>Snoring - physiopathology</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyo-Ki</creatorcontrib><creatorcontrib>Kim, Hojoong</creatorcontrib><creatorcontrib>Lee, Kyoung-Joung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyo-Ki</au><au>Kim, Hojoong</au><au>Lee, Kyoung-Joung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nasal pressure recordings for automatic snoring detection</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>53</volume><issue>11</issue><spage>1103</spage><epage>1111</epage><pages>1103-1111</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>This study presents a rule-based method for automated, real-time snoring detection using nasal pressure recordings during overnight sleep. Although nasal pressure recordings provide information regarding nocturnal breathing abnormalities in a polysomnography (PSG) study or continuous positive airway pressure (CPAP) system, an objective assessment of snoring detection using these nasal pressure recordings has not yet been reported in the literature. Nasal pressure recordings were obtained from 55 patients with obstructive sleep apnea. The PSG data were also recorded simultaneously to evaluate the proposed method. This rule-based method for automatic, real-time snoring detection employed preprocessing, short-time energy and the central difference method. Using this methodology, a sensitivity of 85.4 % and a positive predictive value of 92.0 % were achieved in all patients. Therefore, we concluded that the proposed method is a simple, portable and cost-effective tool for real-time snoring detection in PSG and CPAP systems that does not require acoustic analysis using a microphone.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26392181</pmid><doi>10.1007/s11517-015-1388-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2015-11, Vol.53 (11), p.1103-1111 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770365042 |
source | MEDLINE; Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Acoustics Aged Algorithms Analysis Assessments Automation Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Body mass index Computer Applications Continuous positive airway pressure Cost analysis Female Human Physiology Humans Imaging Male Medical diagnosis Microphones Middle Aged Nose Nose - physiology Original Article Patients Polysomnography - methods Pressure Radiology Real time Recording Respiration Sensitivity and Specificity Sensors Signal Processing, Computer-Assisted Sleep Sleep apnea Sleep deprivation Sleep disorders Snoring - diagnosis Snoring - physiopathology Software Studies |
title | Nasal pressure recordings for automatic snoring detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nasal%20pressure%20recordings%20for%20automatic%20snoring%20detection&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Lee,%20Hyo-Ki&rft.date=2015-11-01&rft.volume=53&rft.issue=11&rft.spage=1103&rft.epage=1111&rft.pages=1103-1111&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-015-1388-2&rft_dat=%3Cproquest_cross%3E1735922263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728507914&rft_id=info:pmid/26392181&rfr_iscdi=true |