A Numerical Simulation of Micro Bionic Fish in Vessel

The work presented a research method of using the external magnetic field to do a numerical simulation of micro bionic fish. The fishtail skeleton was made of alloy sheet and the fish tissue was stuck on the alloy sheet with giant magnetostrictive material (GMM). Then the mechanical model of bionic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mechanics and materials 2015-10, Vol.799-800 (Mechanical and Electrical Technology VII), p.1083-1087
Hauptverfasser: Zhou, Jin Yu, Yang, Chao, Chen, Ju Fang, Zhu, Fu Xian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1087
container_issue Mechanical and Electrical Technology VII
container_start_page 1083
container_title Applied mechanics and materials
container_volume 799-800
creator Zhou, Jin Yu
Yang, Chao
Chen, Ju Fang
Zhu, Fu Xian
description The work presented a research method of using the external magnetic field to do a numerical simulation of micro bionic fish. The fishtail skeleton was made of alloy sheet and the fish tissue was stuck on the alloy sheet with giant magnetostrictive material (GMM). Then the mechanical model of bionic fish was established. By controlling the swaying of fishtail through external magnetic frequency adjustment, it is possible to make the fish move about just like a natural fish. The statistics show that the average driving force when the bionic fish is switched on largely depends on the material parameter, blood viscosity and external magnetic frequency. The average driving force will increase with the growing elasticity modulus (EM) of fishtail material and blood viscosity. The bionic fish can get a quite large driving force particularly when the external magnetic frequency is getting close to the natural frequency of the system. Thus, these findings can serve as a major train of thought and gist for the design and control of micro bionic fish in vessel.
doi_str_mv 10.4028/www.scientific.net/AMM.799-800.1083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770364220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770364220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1833-78b57f457abac89516ed7484fc45dea4ef577048c5f487abce9781d49d7076c53</originalsourceid><addsrcrecordid>eNqVkMtKAzEUhoMXsK2-Q8CNIDNNJtdZ1tKq0OrCC-5CmkloylzqZIbi25taQXHnKhzynf-c8wFwjVFKUSbHu90uDcbbuvPOm7S23XiyXKYizxOJUIqRJEdggDnPEkFldgyGBBFJGCf47eTrAyU5IfwMDEPYIMQppnIA2AQ-9JVtvdElfPJVX-rONzVsHFx60zbwJlbewLkPa-hr-GpDsOU5OHW6DPbi-x2Bl_nseXqXLB5v76eTRWKwJCQRcsWEo0zolTYyZ5jbIi5HnaGssJpax4RAVBrmqIyQsbmQuKB5IZDghpERuDrkbtvmvbehU5UPxpalrm3TB4VjO-E0y1BEL_-gm6Zv67hdpDKWxzFERGp6oOJpIbTWqW3rK91-KIzU3rOKntWPZxU9q-hZRc8qelZ7zzFldkjpWl2Hzpr1r2H_yPkE1JuMhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1725904837</pqid></control><display><type>article</type><title>A Numerical Simulation of Micro Bionic Fish in Vessel</title><source>Scientific.net Journals</source><creator>Zhou, Jin Yu ; Yang, Chao ; Chen, Ju Fang ; Zhu, Fu Xian</creator><creatorcontrib>Zhou, Jin Yu ; Yang, Chao ; Chen, Ju Fang ; Zhu, Fu Xian</creatorcontrib><description>The work presented a research method of using the external magnetic field to do a numerical simulation of micro bionic fish. The fishtail skeleton was made of alloy sheet and the fish tissue was stuck on the alloy sheet with giant magnetostrictive material (GMM). Then the mechanical model of bionic fish was established. By controlling the swaying of fishtail through external magnetic frequency adjustment, it is possible to make the fish move about just like a natural fish. The statistics show that the average driving force when the bionic fish is switched on largely depends on the material parameter, blood viscosity and external magnetic frequency. The average driving force will increase with the growing elasticity modulus (EM) of fishtail material and blood viscosity. The bionic fish can get a quite large driving force particularly when the external magnetic frequency is getting close to the natural frequency of the system. Thus, these findings can serve as a major train of thought and gist for the design and control of micro bionic fish in vessel.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 303835631X</identifier><identifier>ISBN: 9783038356318</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.799-800.1083</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Bionics ; Blood ; Blood vessels ; Computer simulation ; Fish ; Mathematical models ; Statistics ; Viscosity</subject><ispartof>Applied mechanics and materials, 2015-10, Vol.799-800 (Mechanical and Electrical Technology VII), p.1083-1087</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1833-78b57f457abac89516ed7484fc45dea4ef577048c5f487abce9781d49d7076c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4211?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Jin Yu</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Chen, Ju Fang</creatorcontrib><creatorcontrib>Zhu, Fu Xian</creatorcontrib><title>A Numerical Simulation of Micro Bionic Fish in Vessel</title><title>Applied mechanics and materials</title><description>The work presented a research method of using the external magnetic field to do a numerical simulation of micro bionic fish. The fishtail skeleton was made of alloy sheet and the fish tissue was stuck on the alloy sheet with giant magnetostrictive material (GMM). Then the mechanical model of bionic fish was established. By controlling the swaying of fishtail through external magnetic frequency adjustment, it is possible to make the fish move about just like a natural fish. The statistics show that the average driving force when the bionic fish is switched on largely depends on the material parameter, blood viscosity and external magnetic frequency. The average driving force will increase with the growing elasticity modulus (EM) of fishtail material and blood viscosity. The bionic fish can get a quite large driving force particularly when the external magnetic frequency is getting close to the natural frequency of the system. Thus, these findings can serve as a major train of thought and gist for the design and control of micro bionic fish in vessel.</description><subject>Bionics</subject><subject>Blood</subject><subject>Blood vessels</subject><subject>Computer simulation</subject><subject>Fish</subject><subject>Mathematical models</subject><subject>Statistics</subject><subject>Viscosity</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>303835631X</isbn><isbn>9783038356318</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkMtKAzEUhoMXsK2-Q8CNIDNNJtdZ1tKq0OrCC-5CmkloylzqZIbi25taQXHnKhzynf-c8wFwjVFKUSbHu90uDcbbuvPOm7S23XiyXKYizxOJUIqRJEdggDnPEkFldgyGBBFJGCf47eTrAyU5IfwMDEPYIMQppnIA2AQ-9JVtvdElfPJVX-rONzVsHFx60zbwJlbewLkPa-hr-GpDsOU5OHW6DPbi-x2Bl_nseXqXLB5v76eTRWKwJCQRcsWEo0zolTYyZ5jbIi5HnaGssJpax4RAVBrmqIyQsbmQuKB5IZDghpERuDrkbtvmvbehU5UPxpalrm3TB4VjO-E0y1BEL_-gm6Zv67hdpDKWxzFERGp6oOJpIbTWqW3rK91-KIzU3rOKntWPZxU9q-hZRc8qelZ7zzFldkjpWl2Hzpr1r2H_yPkE1JuMhA</recordid><startdate>20151019</startdate><enddate>20151019</enddate><creator>Zhou, Jin Yu</creator><creator>Yang, Chao</creator><creator>Chen, Ju Fang</creator><creator>Zhu, Fu Xian</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151019</creationdate><title>A Numerical Simulation of Micro Bionic Fish in Vessel</title><author>Zhou, Jin Yu ; Yang, Chao ; Chen, Ju Fang ; Zhu, Fu Xian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1833-78b57f457abac89516ed7484fc45dea4ef577048c5f487abce9781d49d7076c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bionics</topic><topic>Blood</topic><topic>Blood vessels</topic><topic>Computer simulation</topic><topic>Fish</topic><topic>Mathematical models</topic><topic>Statistics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jin Yu</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Chen, Ju Fang</creatorcontrib><creatorcontrib>Zhu, Fu Xian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied mechanics and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jin Yu</au><au>Yang, Chao</au><au>Chen, Ju Fang</au><au>Zhu, Fu Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Simulation of Micro Bionic Fish in Vessel</atitle><jtitle>Applied mechanics and materials</jtitle><date>2015-10-19</date><risdate>2015</risdate><volume>799-800</volume><issue>Mechanical and Electrical Technology VII</issue><spage>1083</spage><epage>1087</epage><pages>1083-1087</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>303835631X</isbn><isbn>9783038356318</isbn><abstract>The work presented a research method of using the external magnetic field to do a numerical simulation of micro bionic fish. The fishtail skeleton was made of alloy sheet and the fish tissue was stuck on the alloy sheet with giant magnetostrictive material (GMM). Then the mechanical model of bionic fish was established. By controlling the swaying of fishtail through external magnetic frequency adjustment, it is possible to make the fish move about just like a natural fish. The statistics show that the average driving force when the bionic fish is switched on largely depends on the material parameter, blood viscosity and external magnetic frequency. The average driving force will increase with the growing elasticity modulus (EM) of fishtail material and blood viscosity. The bionic fish can get a quite large driving force particularly when the external magnetic frequency is getting close to the natural frequency of the system. Thus, these findings can serve as a major train of thought and gist for the design and control of micro bionic fish in vessel.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.799-800.1083</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied mechanics and materials, 2015-10, Vol.799-800 (Mechanical and Electrical Technology VII), p.1083-1087
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1770364220
source Scientific.net Journals
subjects Bionics
Blood
Blood vessels
Computer simulation
Fish
Mathematical models
Statistics
Viscosity
title A Numerical Simulation of Micro Bionic Fish in Vessel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Simulation%20of%20Micro%20Bionic%20Fish%20in%20Vessel&rft.jtitle=Applied%20mechanics%20and%20materials&rft.au=Zhou,%20Jin%20Yu&rft.date=2015-10-19&rft.volume=799-800&rft.issue=Mechanical%20and%20Electrical%20Technology%20VII&rft.spage=1083&rft.epage=1087&rft.pages=1083-1087&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=303835631X&rft.isbn_list=9783038356318&rft_id=info:doi/10.4028/www.scientific.net/AMM.799-800.1083&rft_dat=%3Cproquest_cross%3E1770364220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1725904837&rft_id=info:pmid/&rfr_iscdi=true