Lévy walks

Levy walks are random walks in which the distribution of step length does not decay exponentially and the velocity of the moving particle is finite. Building on earlier concepts, they reconcile anomalously fast diffusion with a finite propagation speed and have applications that range from basic sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reviews of modern physics 2015-06, Vol.87 (2), p.483-530
Hauptverfasser: Zaburdaev, V., Denisov, S., Klafter, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 530
container_issue 2
container_start_page 483
container_title Reviews of modern physics
container_volume 87
creator Zaburdaev, V.
Denisov, S.
Klafter, J.
description Levy walks are random walks in which the distribution of step length does not decay exponentially and the velocity of the moving particle is finite. Building on earlier concepts, they reconcile anomalously fast diffusion with a finite propagation speed and have applications that range from basic statistical mechanics and transport theory to optics, cold atom dynamics, and biophysics. This review gives an introduction to this important class of models and discusses applications in both physics and biology. Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Levy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Levy walks, surveys their existing applications, including latest advances, and outlines further perspectives.
doi_str_mv 10.1103/RevModPhys.87.483
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770363660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770363660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-89e48e6afc6d30365473b8f06bd04229815221009b0cf4afdc38265b724d68633</originalsourceid><addsrcrecordid>eNpFj8FKxDAURYMoWKsf4M6lm9aXvOQlXcqgjlBRRNchTRMc7dixmRnpJ_kd_piVEVxdLlwO9zB2yqHkHPDiMWzv-vbhZUyl0aU0uMcyrrAqQCvaZxkAyoIM8UN2lNIrTB2Uzlhef39tx7NP172lY3YQXZfCyV_m7Pn66mk2L-r7m9vZZV14FLQuTBWkCeSipxYBSUmNjYlATQtSiMpwJQQHqBrwUbrYejSCVKOFbKcHiDk733FXQ_-xCWltl4vkQ9e599BvkuVaT1gkgmnKd1M_9CkNIdrVsFi6YbQc7K-4_Re3RttJHH8AEQFLsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770363660</pqid></control><display><type>article</type><title>Lévy walks</title><source>American Physical Society Journals</source><creator>Zaburdaev, V. ; Denisov, S. ; Klafter, J.</creator><creatorcontrib>Zaburdaev, V. ; Denisov, S. ; Klafter, J.</creatorcontrib><description>Levy walks are random walks in which the distribution of step length does not decay exponentially and the velocity of the moving particle is finite. Building on earlier concepts, they reconcile anomalously fast diffusion with a finite propagation speed and have applications that range from basic statistical mechanics and transport theory to optics, cold atom dynamics, and biophysics. This review gives an introduction to this important class of models and discusses applications in both physics and biology. Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Levy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Levy walks, surveys their existing applications, including latest advances, and outlines further perspectives.</description><identifier>ISSN: 0034-6861</identifier><identifier>EISSN: 1539-0756</identifier><identifier>DOI: 10.1103/RevModPhys.87.483</identifier><language>eng</language><subject>Biophysics ; Cold atoms ; Construction ; Diffusion ; Diffusion rate ; Dynamics ; Mathematical analysis ; Random walk</subject><ispartof>Reviews of modern physics, 2015-06, Vol.87 (2), p.483-530</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-89e48e6afc6d30365473b8f06bd04229815221009b0cf4afdc38265b724d68633</citedby><cites>FETCH-LOGICAL-c326t-89e48e6afc6d30365473b8f06bd04229815221009b0cf4afdc38265b724d68633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Zaburdaev, V.</creatorcontrib><creatorcontrib>Denisov, S.</creatorcontrib><creatorcontrib>Klafter, J.</creatorcontrib><title>Lévy walks</title><title>Reviews of modern physics</title><description>Levy walks are random walks in which the distribution of step length does not decay exponentially and the velocity of the moving particle is finite. Building on earlier concepts, they reconcile anomalously fast diffusion with a finite propagation speed and have applications that range from basic statistical mechanics and transport theory to optics, cold atom dynamics, and biophysics. This review gives an introduction to this important class of models and discusses applications in both physics and biology. Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Levy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Levy walks, surveys their existing applications, including latest advances, and outlines further perspectives.</description><subject>Biophysics</subject><subject>Cold atoms</subject><subject>Construction</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Dynamics</subject><subject>Mathematical analysis</subject><subject>Random walk</subject><issn>0034-6861</issn><issn>1539-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFj8FKxDAURYMoWKsf4M6lm9aXvOQlXcqgjlBRRNchTRMc7dixmRnpJ_kd_piVEVxdLlwO9zB2yqHkHPDiMWzv-vbhZUyl0aU0uMcyrrAqQCvaZxkAyoIM8UN2lNIrTB2Uzlhef39tx7NP172lY3YQXZfCyV_m7Pn66mk2L-r7m9vZZV14FLQuTBWkCeSipxYBSUmNjYlATQtSiMpwJQQHqBrwUbrYejSCVKOFbKcHiDk733FXQ_-xCWltl4vkQ9e599BvkuVaT1gkgmnKd1M_9CkNIdrVsFi6YbQc7K-4_Re3RttJHH8AEQFLsw</recordid><startdate>20150609</startdate><enddate>20150609</enddate><creator>Zaburdaev, V.</creator><creator>Denisov, S.</creator><creator>Klafter, J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150609</creationdate><title>Lévy walks</title><author>Zaburdaev, V. ; Denisov, S. ; Klafter, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-89e48e6afc6d30365473b8f06bd04229815221009b0cf4afdc38265b724d68633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biophysics</topic><topic>Cold atoms</topic><topic>Construction</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Dynamics</topic><topic>Mathematical analysis</topic><topic>Random walk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaburdaev, V.</creatorcontrib><creatorcontrib>Denisov, S.</creatorcontrib><creatorcontrib>Klafter, J.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Reviews of modern physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaburdaev, V.</au><au>Denisov, S.</au><au>Klafter, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lévy walks</atitle><jtitle>Reviews of modern physics</jtitle><date>2015-06-09</date><risdate>2015</risdate><volume>87</volume><issue>2</issue><spage>483</spage><epage>530</epage><pages>483-530</pages><issn>0034-6861</issn><eissn>1539-0756</eissn><abstract>Levy walks are random walks in which the distribution of step length does not decay exponentially and the velocity of the moving particle is finite. Building on earlier concepts, they reconcile anomalously fast diffusion with a finite propagation speed and have applications that range from basic statistical mechanics and transport theory to optics, cold atom dynamics, and biophysics. This review gives an introduction to this important class of models and discusses applications in both physics and biology. Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Levy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Levy walks, surveys their existing applications, including latest advances, and outlines further perspectives.</abstract><doi>10.1103/RevModPhys.87.483</doi><tpages>48</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6861
ispartof Reviews of modern physics, 2015-06, Vol.87 (2), p.483-530
issn 0034-6861
1539-0756
language eng
recordid cdi_proquest_miscellaneous_1770363660
source American Physical Society Journals
subjects Biophysics
Cold atoms
Construction
Diffusion
Diffusion rate
Dynamics
Mathematical analysis
Random walk
title Lévy walks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L%C3%A9vy%20walks&rft.jtitle=Reviews%20of%20modern%20physics&rft.au=Zaburdaev,%20V.&rft.date=2015-06-09&rft.volume=87&rft.issue=2&rft.spage=483&rft.epage=530&rft.pages=483-530&rft.issn=0034-6861&rft.eissn=1539-0756&rft_id=info:doi/10.1103/RevModPhys.87.483&rft_dat=%3Cproquest_cross%3E1770363660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770363660&rft_id=info:pmid/&rfr_iscdi=true