The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells

The conjugated polymer, poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (pBTTT‐C16), allows a systematic tuning of the blend morphology by varying the acceptor type and fraction, making it a well‐suited structural model for studying the fundamental processes in organic bulk heterojunct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2014-12, Vol.4 (17), p.np-n/a
Hauptverfasser: Zusan, Andreas, Vandewal, Koen, Allendorf, Benedikt, Hansen, Nis Hauke, Pflaum, Jens, Salleo, Alberto, Dyakonov, Vladimir, Deibel, Carsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 17
container_start_page np
container_title Advanced energy materials
container_volume 4
creator Zusan, Andreas
Vandewal, Koen
Allendorf, Benedikt
Hansen, Nis Hauke
Pflaum, Jens
Salleo, Alberto
Dyakonov, Vladimir
Deibel, Carsten
description The conjugated polymer, poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (pBTTT‐C16), allows a systematic tuning of the blend morphology by varying the acceptor type and fraction, making it a well‐suited structural model for studying the fundamental processes in organic bulk heterojunction solar cells. To analyze the role of intercalated and pure fullerene domains on charge carrier photogeneration, time delayed collection field (TDCF) measurements and Fourier‐transform photocurrent spectroscopy (FTPS) are performed on pBTTT‐C16:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) solar cells with various stoichiometries. A weak influence of excess photon energy on photogeneration along with a photogeneration having a weaker field dependence at increasing fullerene loading is found. The findings are assigned to a dissociation via thermalized charge transfer (CT) states supported by an enhanced electron delocalization along spatially extended PC61BM nanophases that form in addition to a bimolecular crystal (BMC) for PC61BM rich blends. The highly efficient transfer of charge carriers from the BMC into the pure domains are studied further by TDCF measurements performed on non‐intercalated pBTTT‐C16:bisPC61BM blends. They reveal a field dependent charge generation similar to the 1:4 PC61BM blend, demonstrating that the presence of pure acceptor phases is the major driving force for an efficient, field independent CT dissociation. Increasing the fullerene loading significantly lowers the field dependence of free charge carrier generation of bulk heterojunction solar cells based on the polymer pBTTT‐C16. The charge transfer splitting is driven by the presence of pure fullerene domains that are identified as the main prerequisite for a highly efficient, field‐independent charge carrier photogeneration.
doi_str_mv 10.1002/aenm.201400922
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770363074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770363074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4172-245efdd45af157747b4a28ad09b648ee8a80364a6a59268c8547b6b31ed34c563</originalsourceid><addsrcrecordid>eNqFkMtLxDAQh4soKOrVc8CLl655pz1q8QW-YH0cQzY7XbtmE01a1P_e6MoiXswlM8n3DcOvKPYIHhGM6aEBvxhRTDjGNaVrxRaRhJey4nh9VTO6WeymNMf58JpgxraK2d0ToCYOtjMOXfjWDeAtoNCi08E5iOAB3T6ZBAkFn6vQh1l-i6bvct95dBNnxncWHQ_uGZ1DDzHMB2-_v8fBmYgacC7tFButcQl2f-7t4v705K45Ly9vzi6ao8vScqJoSbmAdjrlwrREKMXVhBtamSmuJ5JXAJWpMJPcSCNqKitbiYzICSMwZdwKybaLg-XclxheB0i9XnTJ5g2MhzAkTZTKAxhWPKP7f9B5GKLP22kiGReYSCwyNVpSNoaUIrT6JXYLEz80wforev0VvV5Fn4V6Kbx1Dj7-ofXRyfXVb7dcul3q4X3lmvispWJK6MfrMz3G46uGPDRasU_zXJXX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634501605</pqid></control><display><type>article</type><title>The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells</title><source>Access via Wiley Online Library</source><creator>Zusan, Andreas ; Vandewal, Koen ; Allendorf, Benedikt ; Hansen, Nis Hauke ; Pflaum, Jens ; Salleo, Alberto ; Dyakonov, Vladimir ; Deibel, Carsten</creator><creatorcontrib>Zusan, Andreas ; Vandewal, Koen ; Allendorf, Benedikt ; Hansen, Nis Hauke ; Pflaum, Jens ; Salleo, Alberto ; Dyakonov, Vladimir ; Deibel, Carsten</creatorcontrib><description>The conjugated polymer, poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (pBTTT‐C16), allows a systematic tuning of the blend morphology by varying the acceptor type and fraction, making it a well‐suited structural model for studying the fundamental processes in organic bulk heterojunction solar cells. To analyze the role of intercalated and pure fullerene domains on charge carrier photogeneration, time delayed collection field (TDCF) measurements and Fourier‐transform photocurrent spectroscopy (FTPS) are performed on pBTTT‐C16:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) solar cells with various stoichiometries. A weak influence of excess photon energy on photogeneration along with a photogeneration having a weaker field dependence at increasing fullerene loading is found. The findings are assigned to a dissociation via thermalized charge transfer (CT) states supported by an enhanced electron delocalization along spatially extended PC61BM nanophases that form in addition to a bimolecular crystal (BMC) for PC61BM rich blends. The highly efficient transfer of charge carriers from the BMC into the pure domains are studied further by TDCF measurements performed on non‐intercalated pBTTT‐C16:bisPC61BM blends. They reveal a field dependent charge generation similar to the 1:4 PC61BM blend, demonstrating that the presence of pure acceptor phases is the major driving force for an efficient, field independent CT dissociation. Increasing the fullerene loading significantly lowers the field dependence of free charge carrier generation of bulk heterojunction solar cells based on the polymer pBTTT‐C16. The charge transfer splitting is driven by the presence of pure fullerene domains that are identified as the main prerequisite for a highly efficient, field‐independent charge carrier photogeneration.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201400922</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Blends ; Charge carriers ; Charge transfer ; Fullerenes ; geminate recombination ; Heterojunctions ; intercalation ; organic solar cells ; phase segregation ; Phases ; photogeneration ; Photovoltaic cells ; Solar cells</subject><ispartof>Advanced energy materials, 2014-12, Vol.4 (17), p.np-n/a</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4172-245efdd45af157747b4a28ad09b648ee8a80364a6a59268c8547b6b31ed34c563</citedby><cites>FETCH-LOGICAL-c4172-245efdd45af157747b4a28ad09b648ee8a80364a6a59268c8547b6b31ed34c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201400922$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201400922$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zusan, Andreas</creatorcontrib><creatorcontrib>Vandewal, Koen</creatorcontrib><creatorcontrib>Allendorf, Benedikt</creatorcontrib><creatorcontrib>Hansen, Nis Hauke</creatorcontrib><creatorcontrib>Pflaum, Jens</creatorcontrib><creatorcontrib>Salleo, Alberto</creatorcontrib><creatorcontrib>Dyakonov, Vladimir</creatorcontrib><creatorcontrib>Deibel, Carsten</creatorcontrib><title>The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>The conjugated polymer, poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (pBTTT‐C16), allows a systematic tuning of the blend morphology by varying the acceptor type and fraction, making it a well‐suited structural model for studying the fundamental processes in organic bulk heterojunction solar cells. To analyze the role of intercalated and pure fullerene domains on charge carrier photogeneration, time delayed collection field (TDCF) measurements and Fourier‐transform photocurrent spectroscopy (FTPS) are performed on pBTTT‐C16:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) solar cells with various stoichiometries. A weak influence of excess photon energy on photogeneration along with a photogeneration having a weaker field dependence at increasing fullerene loading is found. The findings are assigned to a dissociation via thermalized charge transfer (CT) states supported by an enhanced electron delocalization along spatially extended PC61BM nanophases that form in addition to a bimolecular crystal (BMC) for PC61BM rich blends. The highly efficient transfer of charge carriers from the BMC into the pure domains are studied further by TDCF measurements performed on non‐intercalated pBTTT‐C16:bisPC61BM blends. They reveal a field dependent charge generation similar to the 1:4 PC61BM blend, demonstrating that the presence of pure acceptor phases is the major driving force for an efficient, field independent CT dissociation. Increasing the fullerene loading significantly lowers the field dependence of free charge carrier generation of bulk heterojunction solar cells based on the polymer pBTTT‐C16. The charge transfer splitting is driven by the presence of pure fullerene domains that are identified as the main prerequisite for a highly efficient, field‐independent charge carrier photogeneration.</description><subject>Blends</subject><subject>Charge carriers</subject><subject>Charge transfer</subject><subject>Fullerenes</subject><subject>geminate recombination</subject><subject>Heterojunctions</subject><subject>intercalation</subject><subject>organic solar cells</subject><subject>phase segregation</subject><subject>Phases</subject><subject>photogeneration</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLxDAQh4soKOrVc8CLl655pz1q8QW-YH0cQzY7XbtmE01a1P_e6MoiXswlM8n3DcOvKPYIHhGM6aEBvxhRTDjGNaVrxRaRhJey4nh9VTO6WeymNMf58JpgxraK2d0ToCYOtjMOXfjWDeAtoNCi08E5iOAB3T6ZBAkFn6vQh1l-i6bvct95dBNnxncWHQ_uGZ1DDzHMB2-_v8fBmYgacC7tFButcQl2f-7t4v705K45Ly9vzi6ao8vScqJoSbmAdjrlwrREKMXVhBtamSmuJ5JXAJWpMJPcSCNqKitbiYzICSMwZdwKybaLg-XclxheB0i9XnTJ5g2MhzAkTZTKAxhWPKP7f9B5GKLP22kiGReYSCwyNVpSNoaUIrT6JXYLEz80wforev0VvV5Fn4V6Kbx1Dj7-ofXRyfXVb7dcul3q4X3lmvispWJK6MfrMz3G46uGPDRasU_zXJXX</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Zusan, Andreas</creator><creator>Vandewal, Koen</creator><creator>Allendorf, Benedikt</creator><creator>Hansen, Nis Hauke</creator><creator>Pflaum, Jens</creator><creator>Salleo, Alberto</creator><creator>Dyakonov, Vladimir</creator><creator>Deibel, Carsten</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141201</creationdate><title>The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells</title><author>Zusan, Andreas ; Vandewal, Koen ; Allendorf, Benedikt ; Hansen, Nis Hauke ; Pflaum, Jens ; Salleo, Alberto ; Dyakonov, Vladimir ; Deibel, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4172-245efdd45af157747b4a28ad09b648ee8a80364a6a59268c8547b6b31ed34c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Blends</topic><topic>Charge carriers</topic><topic>Charge transfer</topic><topic>Fullerenes</topic><topic>geminate recombination</topic><topic>Heterojunctions</topic><topic>intercalation</topic><topic>organic solar cells</topic><topic>phase segregation</topic><topic>Phases</topic><topic>photogeneration</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zusan, Andreas</creatorcontrib><creatorcontrib>Vandewal, Koen</creatorcontrib><creatorcontrib>Allendorf, Benedikt</creatorcontrib><creatorcontrib>Hansen, Nis Hauke</creatorcontrib><creatorcontrib>Pflaum, Jens</creatorcontrib><creatorcontrib>Salleo, Alberto</creatorcontrib><creatorcontrib>Dyakonov, Vladimir</creatorcontrib><creatorcontrib>Deibel, Carsten</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zusan, Andreas</au><au>Vandewal, Koen</au><au>Allendorf, Benedikt</au><au>Hansen, Nis Hauke</au><au>Pflaum, Jens</au><au>Salleo, Alberto</au><au>Dyakonov, Vladimir</au><au>Deibel, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>4</volume><issue>17</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The conjugated polymer, poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (pBTTT‐C16), allows a systematic tuning of the blend morphology by varying the acceptor type and fraction, making it a well‐suited structural model for studying the fundamental processes in organic bulk heterojunction solar cells. To analyze the role of intercalated and pure fullerene domains on charge carrier photogeneration, time delayed collection field (TDCF) measurements and Fourier‐transform photocurrent spectroscopy (FTPS) are performed on pBTTT‐C16:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) solar cells with various stoichiometries. A weak influence of excess photon energy on photogeneration along with a photogeneration having a weaker field dependence at increasing fullerene loading is found. The findings are assigned to a dissociation via thermalized charge transfer (CT) states supported by an enhanced electron delocalization along spatially extended PC61BM nanophases that form in addition to a bimolecular crystal (BMC) for PC61BM rich blends. The highly efficient transfer of charge carriers from the BMC into the pure domains are studied further by TDCF measurements performed on non‐intercalated pBTTT‐C16:bisPC61BM blends. They reveal a field dependent charge generation similar to the 1:4 PC61BM blend, demonstrating that the presence of pure acceptor phases is the major driving force for an efficient, field independent CT dissociation. Increasing the fullerene loading significantly lowers the field dependence of free charge carrier generation of bulk heterojunction solar cells based on the polymer pBTTT‐C16. The charge transfer splitting is driven by the presence of pure fullerene domains that are identified as the main prerequisite for a highly efficient, field‐independent charge carrier photogeneration.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201400922</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2014-12, Vol.4 (17), p.np-n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_miscellaneous_1770363074
source Access via Wiley Online Library
subjects Blends
Charge carriers
Charge transfer
Fullerenes
geminate recombination
Heterojunctions
intercalation
organic solar cells
phase segregation
Phases
photogeneration
Photovoltaic cells
Solar cells
title The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Crucial%20Influence%20of%20Fullerene%20Phases%20on%20Photogeneration%20in%20Organic%20Bulk%20Heterojunction%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Zusan,%20Andreas&rft.date=2014-12-01&rft.volume=4&rft.issue=17&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201400922&rft_dat=%3Cproquest_cross%3E1770363074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1634501605&rft_id=info:pmid/&rfr_iscdi=true