The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells
The conjugated polymer, poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (pBTTT‐C16), allows a systematic tuning of the blend morphology by varying the acceptor type and fraction, making it a well‐suited structural model for studying the fundamental processes in organic bulk heterojunct...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2014-12, Vol.4 (17), p.np-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | np |
container_title | Advanced energy materials |
container_volume | 4 |
creator | Zusan, Andreas Vandewal, Koen Allendorf, Benedikt Hansen, Nis Hauke Pflaum, Jens Salleo, Alberto Dyakonov, Vladimir Deibel, Carsten |
description | The conjugated polymer, poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (pBTTT‐C16), allows a systematic tuning of the blend morphology by varying the acceptor type and fraction, making it a well‐suited structural model for studying the fundamental processes in organic bulk heterojunction solar cells. To analyze the role of intercalated and pure fullerene domains on charge carrier photogeneration, time delayed collection field (TDCF) measurements and Fourier‐transform photocurrent spectroscopy (FTPS) are performed on pBTTT‐C16:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) solar cells with various stoichiometries. A weak influence of excess photon energy on photogeneration along with a photogeneration having a weaker field dependence at increasing fullerene loading is found. The findings are assigned to a dissociation via thermalized charge transfer (CT) states supported by an enhanced electron delocalization along spatially extended PC61BM nanophases that form in addition to a bimolecular crystal (BMC) for PC61BM rich blends. The highly efficient transfer of charge carriers from the BMC into the pure domains are studied further by TDCF measurements performed on non‐intercalated pBTTT‐C16:bisPC61BM blends. They reveal a field dependent charge generation similar to the 1:4 PC61BM blend, demonstrating that the presence of pure acceptor phases is the major driving force for an efficient, field independent CT dissociation.
Increasing the fullerene loading significantly lowers the field dependence of free charge carrier generation of bulk heterojunction solar cells based on the polymer pBTTT‐C16. The charge transfer splitting is driven by the presence of pure fullerene domains that are identified as the main prerequisite for a highly efficient, field‐independent charge carrier photogeneration. |
doi_str_mv | 10.1002/aenm.201400922 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770363074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770363074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4172-245efdd45af157747b4a28ad09b648ee8a80364a6a59268c8547b6b31ed34c563</originalsourceid><addsrcrecordid>eNqFkMtLxDAQh4soKOrVc8CLl655pz1q8QW-YH0cQzY7XbtmE01a1P_e6MoiXswlM8n3DcOvKPYIHhGM6aEBvxhRTDjGNaVrxRaRhJey4nh9VTO6WeymNMf58JpgxraK2d0ToCYOtjMOXfjWDeAtoNCi08E5iOAB3T6ZBAkFn6vQh1l-i6bvct95dBNnxncWHQ_uGZ1DDzHMB2-_v8fBmYgacC7tFButcQl2f-7t4v705K45Ly9vzi6ao8vScqJoSbmAdjrlwrREKMXVhBtamSmuJ5JXAJWpMJPcSCNqKitbiYzICSMwZdwKybaLg-XclxheB0i9XnTJ5g2MhzAkTZTKAxhWPKP7f9B5GKLP22kiGReYSCwyNVpSNoaUIrT6JXYLEz80wforev0VvV5Fn4V6Kbx1Dj7-ofXRyfXVb7dcul3q4X3lmvispWJK6MfrMz3G46uGPDRasU_zXJXX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634501605</pqid></control><display><type>article</type><title>The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells</title><source>Access via Wiley Online Library</source><creator>Zusan, Andreas ; Vandewal, Koen ; Allendorf, Benedikt ; Hansen, Nis Hauke ; Pflaum, Jens ; Salleo, Alberto ; Dyakonov, Vladimir ; Deibel, Carsten</creator><creatorcontrib>Zusan, Andreas ; Vandewal, Koen ; Allendorf, Benedikt ; Hansen, Nis Hauke ; Pflaum, Jens ; Salleo, Alberto ; Dyakonov, Vladimir ; Deibel, Carsten</creatorcontrib><description>The conjugated polymer, poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (pBTTT‐C16), allows a systematic tuning of the blend morphology by varying the acceptor type and fraction, making it a well‐suited structural model for studying the fundamental processes in organic bulk heterojunction solar cells. To analyze the role of intercalated and pure fullerene domains on charge carrier photogeneration, time delayed collection field (TDCF) measurements and Fourier‐transform photocurrent spectroscopy (FTPS) are performed on pBTTT‐C16:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) solar cells with various stoichiometries. A weak influence of excess photon energy on photogeneration along with a photogeneration having a weaker field dependence at increasing fullerene loading is found. The findings are assigned to a dissociation via thermalized charge transfer (CT) states supported by an enhanced electron delocalization along spatially extended PC61BM nanophases that form in addition to a bimolecular crystal (BMC) for PC61BM rich blends. The highly efficient transfer of charge carriers from the BMC into the pure domains are studied further by TDCF measurements performed on non‐intercalated pBTTT‐C16:bisPC61BM blends. They reveal a field dependent charge generation similar to the 1:4 PC61BM blend, demonstrating that the presence of pure acceptor phases is the major driving force for an efficient, field independent CT dissociation.
Increasing the fullerene loading significantly lowers the field dependence of free charge carrier generation of bulk heterojunction solar cells based on the polymer pBTTT‐C16. The charge transfer splitting is driven by the presence of pure fullerene domains that are identified as the main prerequisite for a highly efficient, field‐independent charge carrier photogeneration.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201400922</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Blends ; Charge carriers ; Charge transfer ; Fullerenes ; geminate recombination ; Heterojunctions ; intercalation ; organic solar cells ; phase segregation ; Phases ; photogeneration ; Photovoltaic cells ; Solar cells</subject><ispartof>Advanced energy materials, 2014-12, Vol.4 (17), p.np-n/a</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4172-245efdd45af157747b4a28ad09b648ee8a80364a6a59268c8547b6b31ed34c563</citedby><cites>FETCH-LOGICAL-c4172-245efdd45af157747b4a28ad09b648ee8a80364a6a59268c8547b6b31ed34c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201400922$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201400922$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zusan, Andreas</creatorcontrib><creatorcontrib>Vandewal, Koen</creatorcontrib><creatorcontrib>Allendorf, Benedikt</creatorcontrib><creatorcontrib>Hansen, Nis Hauke</creatorcontrib><creatorcontrib>Pflaum, Jens</creatorcontrib><creatorcontrib>Salleo, Alberto</creatorcontrib><creatorcontrib>Dyakonov, Vladimir</creatorcontrib><creatorcontrib>Deibel, Carsten</creatorcontrib><title>The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>The conjugated polymer, poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (pBTTT‐C16), allows a systematic tuning of the blend morphology by varying the acceptor type and fraction, making it a well‐suited structural model for studying the fundamental processes in organic bulk heterojunction solar cells. To analyze the role of intercalated and pure fullerene domains on charge carrier photogeneration, time delayed collection field (TDCF) measurements and Fourier‐transform photocurrent spectroscopy (FTPS) are performed on pBTTT‐C16:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) solar cells with various stoichiometries. A weak influence of excess photon energy on photogeneration along with a photogeneration having a weaker field dependence at increasing fullerene loading is found. The findings are assigned to a dissociation via thermalized charge transfer (CT) states supported by an enhanced electron delocalization along spatially extended PC61BM nanophases that form in addition to a bimolecular crystal (BMC) for PC61BM rich blends. The highly efficient transfer of charge carriers from the BMC into the pure domains are studied further by TDCF measurements performed on non‐intercalated pBTTT‐C16:bisPC61BM blends. They reveal a field dependent charge generation similar to the 1:4 PC61BM blend, demonstrating that the presence of pure acceptor phases is the major driving force for an efficient, field independent CT dissociation.
Increasing the fullerene loading significantly lowers the field dependence of free charge carrier generation of bulk heterojunction solar cells based on the polymer pBTTT‐C16. The charge transfer splitting is driven by the presence of pure fullerene domains that are identified as the main prerequisite for a highly efficient, field‐independent charge carrier photogeneration.</description><subject>Blends</subject><subject>Charge carriers</subject><subject>Charge transfer</subject><subject>Fullerenes</subject><subject>geminate recombination</subject><subject>Heterojunctions</subject><subject>intercalation</subject><subject>organic solar cells</subject><subject>phase segregation</subject><subject>Phases</subject><subject>photogeneration</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLxDAQh4soKOrVc8CLl655pz1q8QW-YH0cQzY7XbtmE01a1P_e6MoiXswlM8n3DcOvKPYIHhGM6aEBvxhRTDjGNaVrxRaRhJey4nh9VTO6WeymNMf58JpgxraK2d0ToCYOtjMOXfjWDeAtoNCi08E5iOAB3T6ZBAkFn6vQh1l-i6bvct95dBNnxncWHQ_uGZ1DDzHMB2-_v8fBmYgacC7tFButcQl2f-7t4v705K45Ly9vzi6ao8vScqJoSbmAdjrlwrREKMXVhBtamSmuJ5JXAJWpMJPcSCNqKitbiYzICSMwZdwKybaLg-XclxheB0i9XnTJ5g2MhzAkTZTKAxhWPKP7f9B5GKLP22kiGReYSCwyNVpSNoaUIrT6JXYLEz80wforev0VvV5Fn4V6Kbx1Dj7-ofXRyfXVb7dcul3q4X3lmvispWJK6MfrMz3G46uGPDRasU_zXJXX</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Zusan, Andreas</creator><creator>Vandewal, Koen</creator><creator>Allendorf, Benedikt</creator><creator>Hansen, Nis Hauke</creator><creator>Pflaum, Jens</creator><creator>Salleo, Alberto</creator><creator>Dyakonov, Vladimir</creator><creator>Deibel, Carsten</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141201</creationdate><title>The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells</title><author>Zusan, Andreas ; Vandewal, Koen ; Allendorf, Benedikt ; Hansen, Nis Hauke ; Pflaum, Jens ; Salleo, Alberto ; Dyakonov, Vladimir ; Deibel, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4172-245efdd45af157747b4a28ad09b648ee8a80364a6a59268c8547b6b31ed34c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Blends</topic><topic>Charge carriers</topic><topic>Charge transfer</topic><topic>Fullerenes</topic><topic>geminate recombination</topic><topic>Heterojunctions</topic><topic>intercalation</topic><topic>organic solar cells</topic><topic>phase segregation</topic><topic>Phases</topic><topic>photogeneration</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zusan, Andreas</creatorcontrib><creatorcontrib>Vandewal, Koen</creatorcontrib><creatorcontrib>Allendorf, Benedikt</creatorcontrib><creatorcontrib>Hansen, Nis Hauke</creatorcontrib><creatorcontrib>Pflaum, Jens</creatorcontrib><creatorcontrib>Salleo, Alberto</creatorcontrib><creatorcontrib>Dyakonov, Vladimir</creatorcontrib><creatorcontrib>Deibel, Carsten</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zusan, Andreas</au><au>Vandewal, Koen</au><au>Allendorf, Benedikt</au><au>Hansen, Nis Hauke</au><au>Pflaum, Jens</au><au>Salleo, Alberto</au><au>Dyakonov, Vladimir</au><au>Deibel, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>4</volume><issue>17</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The conjugated polymer, poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (pBTTT‐C16), allows a systematic tuning of the blend morphology by varying the acceptor type and fraction, making it a well‐suited structural model for studying the fundamental processes in organic bulk heterojunction solar cells. To analyze the role of intercalated and pure fullerene domains on charge carrier photogeneration, time delayed collection field (TDCF) measurements and Fourier‐transform photocurrent spectroscopy (FTPS) are performed on pBTTT‐C16:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) solar cells with various stoichiometries. A weak influence of excess photon energy on photogeneration along with a photogeneration having a weaker field dependence at increasing fullerene loading is found. The findings are assigned to a dissociation via thermalized charge transfer (CT) states supported by an enhanced electron delocalization along spatially extended PC61BM nanophases that form in addition to a bimolecular crystal (BMC) for PC61BM rich blends. The highly efficient transfer of charge carriers from the BMC into the pure domains are studied further by TDCF measurements performed on non‐intercalated pBTTT‐C16:bisPC61BM blends. They reveal a field dependent charge generation similar to the 1:4 PC61BM blend, demonstrating that the presence of pure acceptor phases is the major driving force for an efficient, field independent CT dissociation.
Increasing the fullerene loading significantly lowers the field dependence of free charge carrier generation of bulk heterojunction solar cells based on the polymer pBTTT‐C16. The charge transfer splitting is driven by the presence of pure fullerene domains that are identified as the main prerequisite for a highly efficient, field‐independent charge carrier photogeneration.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201400922</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2014-12, Vol.4 (17), p.np-n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770363074 |
source | Access via Wiley Online Library |
subjects | Blends Charge carriers Charge transfer Fullerenes geminate recombination Heterojunctions intercalation organic solar cells phase segregation Phases photogeneration Photovoltaic cells Solar cells |
title | The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Crucial%20Influence%20of%20Fullerene%20Phases%20on%20Photogeneration%20in%20Organic%20Bulk%20Heterojunction%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Zusan,%20Andreas&rft.date=2014-12-01&rft.volume=4&rft.issue=17&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201400922&rft_dat=%3Cproquest_cross%3E1770363074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1634501605&rft_id=info:pmid/&rfr_iscdi=true |