Thermal magnetic field noise: Electron optics and decoherence
Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered s...
Gespeichert in:
Veröffentlicht in: | Ultramicroscopy 2015-04, Vol.151, p.199-210 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | |
container_start_page | 199 |
container_title | Ultramicroscopy |
container_volume | 151 |
creator | Uhlemann, Stephan Müller, Heiko Zach, Joachim Haider, Max |
description | Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered structure of magnetic and non-magnetic materials. For a simplified version of this setup and other situations we derive semi-analytical models in order to predict the strength, bandwidth and spatial correlation of the noise fields. The results of the simulations are finally compared to previous and new experimental data in a quantitative manner.
•We report on magnetic field noise of a thermodynamic origin which can cause decoherence in the medium voltage electron microscope (S)TEM.•Previously published and new experimental results are compared to theoretical predictions.•Layered structures of non-magnetic and magnetic materials in electron-optical components are treated theoretically and covered by experiments.•Various ways to calculate the power spectral density of the magnetic noise based on the fluctuation-dissipation theorem are used for the evaluation.•The calculated spatial coherence of magnetic noise in a beam tube is used for the comparison of theoretical predictions and experiments. |
doi_str_mv | 10.1016/j.ultramic.2014.11.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770360828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399114002381</els_id><sourcerecordid>1770360828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-3f0c10292ca0db0bfc68ddafec51052baddf2240b7d5412d3cf0b7818b76e5133</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK3-hZKjl8SZzeZLEJRSP6DgpZ6Xze5Et-Sj7iaC_97UWq89zcA877zwMDZHiBAwvdlEQ9071VgdcUARIUbA-QmbYp4VIc94fMqmEIMI46LACbvwfgMACCI_ZxOeiKIALKbsbv1BrlF10Kj3lnqrg8pSbYK2s55ug2VNunddG3Tb8eYD1ZrAkO7GELWaLtlZpWpPV39zxt4el-vFc7h6fXpZPKxCLTLsw7gCjcALrhWYEspKp7kxqiKdICS8VMZUnAsoM5MI5CbW1bjnmJdZSgnG8Yxd7_9uXfc5kO9lY72mulYtdYOXmGUQp5Dz_DiapkIILn7RdI9q13nvqJJbZxvlviWC3FmWG3mwLHeWJaIcLY_B-V_HUDZk_mMHrSNwvwdolPJlyUmv7U6YsW4UKk1nj3X8AAv9kN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664442428</pqid></control><display><type>article</type><title>Thermal magnetic field noise: Electron optics and decoherence</title><source>Elsevier ScienceDirect Journals</source><creator>Uhlemann, Stephan ; Müller, Heiko ; Zach, Joachim ; Haider, Max</creator><creatorcontrib>Uhlemann, Stephan ; Müller, Heiko ; Zach, Joachim ; Haider, Max</creatorcontrib><description>Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered structure of magnetic and non-magnetic materials. For a simplified version of this setup and other situations we derive semi-analytical models in order to predict the strength, bandwidth and spatial correlation of the noise fields. The results of the simulations are finally compared to previous and new experimental data in a quantitative manner.
•We report on magnetic field noise of a thermodynamic origin which can cause decoherence in the medium voltage electron microscope (S)TEM.•Previously published and new experimental results are compared to theoretical predictions.•Layered structures of non-magnetic and magnetic materials in electron-optical components are treated theoretically and covered by experiments.•Various ways to calculate the power spectral density of the magnetic noise based on the fluctuation-dissipation theorem are used for the evaluation.•The calculated spatial coherence of magnetic noise in a beam tube is used for the comparison of theoretical predictions and experiments.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2014.11.022</identifier><identifier>PMID: 25499019</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bandwidth ; Computer simulation ; Correlation ; Decoherence ; Electron optics ; HRTEM ; Magnetic fields ; Mathematical models ; Noise ; Thermal magnetic noise ; Transmission electron microscopy</subject><ispartof>Ultramicroscopy, 2015-04, Vol.151, p.199-210</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-3f0c10292ca0db0bfc68ddafec51052baddf2240b7d5412d3cf0b7818b76e5133</citedby><cites>FETCH-LOGICAL-c471t-3f0c10292ca0db0bfc68ddafec51052baddf2240b7d5412d3cf0b7818b76e5133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304399114002381$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25499019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uhlemann, Stephan</creatorcontrib><creatorcontrib>Müller, Heiko</creatorcontrib><creatorcontrib>Zach, Joachim</creatorcontrib><creatorcontrib>Haider, Max</creatorcontrib><title>Thermal magnetic field noise: Electron optics and decoherence</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered structure of magnetic and non-magnetic materials. For a simplified version of this setup and other situations we derive semi-analytical models in order to predict the strength, bandwidth and spatial correlation of the noise fields. The results of the simulations are finally compared to previous and new experimental data in a quantitative manner.
•We report on magnetic field noise of a thermodynamic origin which can cause decoherence in the medium voltage electron microscope (S)TEM.•Previously published and new experimental results are compared to theoretical predictions.•Layered structures of non-magnetic and magnetic materials in electron-optical components are treated theoretically and covered by experiments.•Various ways to calculate the power spectral density of the magnetic noise based on the fluctuation-dissipation theorem are used for the evaluation.•The calculated spatial coherence of magnetic noise in a beam tube is used for the comparison of theoretical predictions and experiments.</description><subject>Bandwidth</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Decoherence</subject><subject>Electron optics</subject><subject>HRTEM</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Thermal magnetic noise</subject><subject>Transmission electron microscopy</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRbK3-hZKjl8SZzeZLEJRSP6DgpZ6Xze5Et-Sj7iaC_97UWq89zcA877zwMDZHiBAwvdlEQ9071VgdcUARIUbA-QmbYp4VIc94fMqmEIMI46LACbvwfgMACCI_ZxOeiKIALKbsbv1BrlF10Kj3lnqrg8pSbYK2s55ug2VNunddG3Tb8eYD1ZrAkO7GELWaLtlZpWpPV39zxt4el-vFc7h6fXpZPKxCLTLsw7gCjcALrhWYEspKp7kxqiKdICS8VMZUnAsoM5MI5CbW1bjnmJdZSgnG8Yxd7_9uXfc5kO9lY72mulYtdYOXmGUQp5Dz_DiapkIILn7RdI9q13nvqJJbZxvlviWC3FmWG3mwLHeWJaIcLY_B-V_HUDZk_mMHrSNwvwdolPJlyUmv7U6YsW4UKk1nj3X8AAv9kN4</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Uhlemann, Stephan</creator><creator>Müller, Heiko</creator><creator>Zach, Joachim</creator><creator>Haider, Max</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150401</creationdate><title>Thermal magnetic field noise: Electron optics and decoherence</title><author>Uhlemann, Stephan ; Müller, Heiko ; Zach, Joachim ; Haider, Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-3f0c10292ca0db0bfc68ddafec51052baddf2240b7d5412d3cf0b7818b76e5133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bandwidth</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Decoherence</topic><topic>Electron optics</topic><topic>HRTEM</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Thermal magnetic noise</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uhlemann, Stephan</creatorcontrib><creatorcontrib>Müller, Heiko</creatorcontrib><creatorcontrib>Zach, Joachim</creatorcontrib><creatorcontrib>Haider, Max</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uhlemann, Stephan</au><au>Müller, Heiko</au><au>Zach, Joachim</au><au>Haider, Max</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal magnetic field noise: Electron optics and decoherence</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>151</volume><spage>199</spage><epage>210</epage><pages>199-210</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered structure of magnetic and non-magnetic materials. For a simplified version of this setup and other situations we derive semi-analytical models in order to predict the strength, bandwidth and spatial correlation of the noise fields. The results of the simulations are finally compared to previous and new experimental data in a quantitative manner.
•We report on magnetic field noise of a thermodynamic origin which can cause decoherence in the medium voltage electron microscope (S)TEM.•Previously published and new experimental results are compared to theoretical predictions.•Layered structures of non-magnetic and magnetic materials in electron-optical components are treated theoretically and covered by experiments.•Various ways to calculate the power spectral density of the magnetic noise based on the fluctuation-dissipation theorem are used for the evaluation.•The calculated spatial coherence of magnetic noise in a beam tube is used for the comparison of theoretical predictions and experiments.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25499019</pmid><doi>10.1016/j.ultramic.2014.11.022</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3991 |
ispartof | Ultramicroscopy, 2015-04, Vol.151, p.199-210 |
issn | 0304-3991 1879-2723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770360828 |
source | Elsevier ScienceDirect Journals |
subjects | Bandwidth Computer simulation Correlation Decoherence Electron optics HRTEM Magnetic fields Mathematical models Noise Thermal magnetic noise Transmission electron microscopy |
title | Thermal magnetic field noise: Electron optics and decoherence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20magnetic%20field%20noise:%20Electron%20optics%20and%20decoherence&rft.jtitle=Ultramicroscopy&rft.au=Uhlemann,%20Stephan&rft.date=2015-04-01&rft.volume=151&rft.spage=199&rft.epage=210&rft.pages=199-210&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2014.11.022&rft_dat=%3Cproquest_cross%3E1770360828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664442428&rft_id=info:pmid/25499019&rft_els_id=S0304399114002381&rfr_iscdi=true |