Thermal magnetic field noise: Electron optics and decoherence

Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultramicroscopy 2015-04, Vol.151, p.199-210
Hauptverfasser: Uhlemann, Stephan, Müller, Heiko, Zach, Joachim, Haider, Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 210
container_issue
container_start_page 199
container_title Ultramicroscopy
container_volume 151
creator Uhlemann, Stephan
Müller, Heiko
Zach, Joachim
Haider, Max
description Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered structure of magnetic and non-magnetic materials. For a simplified version of this setup and other situations we derive semi-analytical models in order to predict the strength, bandwidth and spatial correlation of the noise fields. The results of the simulations are finally compared to previous and new experimental data in a quantitative manner. •We report on magnetic field noise of a thermodynamic origin which can cause decoherence in the medium voltage electron microscope (S)TEM.•Previously published and new experimental results are compared to theoretical predictions.•Layered structures of non-magnetic and magnetic materials in electron-optical components are treated theoretically and covered by experiments.•Various ways to calculate the power spectral density of the magnetic noise based on the fluctuation-dissipation theorem are used for the evaluation.•The calculated spatial coherence of magnetic noise in a beam tube is used for the comparison of theoretical predictions and experiments.
doi_str_mv 10.1016/j.ultramic.2014.11.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770360828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399114002381</els_id><sourcerecordid>1770360828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-3f0c10292ca0db0bfc68ddafec51052baddf2240b7d5412d3cf0b7818b76e5133</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK3-hZKjl8SZzeZLEJRSP6DgpZ6Xze5Et-Sj7iaC_97UWq89zcA877zwMDZHiBAwvdlEQ9071VgdcUARIUbA-QmbYp4VIc94fMqmEIMI46LACbvwfgMACCI_ZxOeiKIALKbsbv1BrlF10Kj3lnqrg8pSbYK2s55ug2VNunddG3Tb8eYD1ZrAkO7GELWaLtlZpWpPV39zxt4el-vFc7h6fXpZPKxCLTLsw7gCjcALrhWYEspKp7kxqiKdICS8VMZUnAsoM5MI5CbW1bjnmJdZSgnG8Yxd7_9uXfc5kO9lY72mulYtdYOXmGUQp5Dz_DiapkIILn7RdI9q13nvqJJbZxvlviWC3FmWG3mwLHeWJaIcLY_B-V_HUDZk_mMHrSNwvwdolPJlyUmv7U6YsW4UKk1nj3X8AAv9kN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664442428</pqid></control><display><type>article</type><title>Thermal magnetic field noise: Electron optics and decoherence</title><source>Elsevier ScienceDirect Journals</source><creator>Uhlemann, Stephan ; Müller, Heiko ; Zach, Joachim ; Haider, Max</creator><creatorcontrib>Uhlemann, Stephan ; Müller, Heiko ; Zach, Joachim ; Haider, Max</creatorcontrib><description>Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered structure of magnetic and non-magnetic materials. For a simplified version of this setup and other situations we derive semi-analytical models in order to predict the strength, bandwidth and spatial correlation of the noise fields. The results of the simulations are finally compared to previous and new experimental data in a quantitative manner. •We report on magnetic field noise of a thermodynamic origin which can cause decoherence in the medium voltage electron microscope (S)TEM.•Previously published and new experimental results are compared to theoretical predictions.•Layered structures of non-magnetic and magnetic materials in electron-optical components are treated theoretically and covered by experiments.•Various ways to calculate the power spectral density of the magnetic noise based on the fluctuation-dissipation theorem are used for the evaluation.•The calculated spatial coherence of magnetic noise in a beam tube is used for the comparison of theoretical predictions and experiments.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2014.11.022</identifier><identifier>PMID: 25499019</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bandwidth ; Computer simulation ; Correlation ; Decoherence ; Electron optics ; HRTEM ; Magnetic fields ; Mathematical models ; Noise ; Thermal magnetic noise ; Transmission electron microscopy</subject><ispartof>Ultramicroscopy, 2015-04, Vol.151, p.199-210</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-3f0c10292ca0db0bfc68ddafec51052baddf2240b7d5412d3cf0b7818b76e5133</citedby><cites>FETCH-LOGICAL-c471t-3f0c10292ca0db0bfc68ddafec51052baddf2240b7d5412d3cf0b7818b76e5133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304399114002381$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25499019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uhlemann, Stephan</creatorcontrib><creatorcontrib>Müller, Heiko</creatorcontrib><creatorcontrib>Zach, Joachim</creatorcontrib><creatorcontrib>Haider, Max</creatorcontrib><title>Thermal magnetic field noise: Electron optics and decoherence</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered structure of magnetic and non-magnetic materials. For a simplified version of this setup and other situations we derive semi-analytical models in order to predict the strength, bandwidth and spatial correlation of the noise fields. The results of the simulations are finally compared to previous and new experimental data in a quantitative manner. •We report on magnetic field noise of a thermodynamic origin which can cause decoherence in the medium voltage electron microscope (S)TEM.•Previously published and new experimental results are compared to theoretical predictions.•Layered structures of non-magnetic and magnetic materials in electron-optical components are treated theoretically and covered by experiments.•Various ways to calculate the power spectral density of the magnetic noise based on the fluctuation-dissipation theorem are used for the evaluation.•The calculated spatial coherence of magnetic noise in a beam tube is used for the comparison of theoretical predictions and experiments.</description><subject>Bandwidth</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Decoherence</subject><subject>Electron optics</subject><subject>HRTEM</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Thermal magnetic noise</subject><subject>Transmission electron microscopy</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRbK3-hZKjl8SZzeZLEJRSP6DgpZ6Xze5Et-Sj7iaC_97UWq89zcA877zwMDZHiBAwvdlEQ9071VgdcUARIUbA-QmbYp4VIc94fMqmEIMI46LACbvwfgMACCI_ZxOeiKIALKbsbv1BrlF10Kj3lnqrg8pSbYK2s55ug2VNunddG3Tb8eYD1ZrAkO7GELWaLtlZpWpPV39zxt4el-vFc7h6fXpZPKxCLTLsw7gCjcALrhWYEspKp7kxqiKdICS8VMZUnAsoM5MI5CbW1bjnmJdZSgnG8Yxd7_9uXfc5kO9lY72mulYtdYOXmGUQp5Dz_DiapkIILn7RdI9q13nvqJJbZxvlviWC3FmWG3mwLHeWJaIcLY_B-V_HUDZk_mMHrSNwvwdolPJlyUmv7U6YsW4UKk1nj3X8AAv9kN4</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Uhlemann, Stephan</creator><creator>Müller, Heiko</creator><creator>Zach, Joachim</creator><creator>Haider, Max</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150401</creationdate><title>Thermal magnetic field noise: Electron optics and decoherence</title><author>Uhlemann, Stephan ; Müller, Heiko ; Zach, Joachim ; Haider, Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-3f0c10292ca0db0bfc68ddafec51052baddf2240b7d5412d3cf0b7818b76e5133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bandwidth</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Decoherence</topic><topic>Electron optics</topic><topic>HRTEM</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Thermal magnetic noise</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uhlemann, Stephan</creatorcontrib><creatorcontrib>Müller, Heiko</creatorcontrib><creatorcontrib>Zach, Joachim</creatorcontrib><creatorcontrib>Haider, Max</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uhlemann, Stephan</au><au>Müller, Heiko</au><au>Zach, Joachim</au><au>Haider, Max</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal magnetic field noise: Electron optics and decoherence</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>151</volume><spage>199</spage><epage>210</epage><pages>199-210</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered structure of magnetic and non-magnetic materials. For a simplified version of this setup and other situations we derive semi-analytical models in order to predict the strength, bandwidth and spatial correlation of the noise fields. The results of the simulations are finally compared to previous and new experimental data in a quantitative manner. •We report on magnetic field noise of a thermodynamic origin which can cause decoherence in the medium voltage electron microscope (S)TEM.•Previously published and new experimental results are compared to theoretical predictions.•Layered structures of non-magnetic and magnetic materials in electron-optical components are treated theoretically and covered by experiments.•Various ways to calculate the power spectral density of the magnetic noise based on the fluctuation-dissipation theorem are used for the evaluation.•The calculated spatial coherence of magnetic noise in a beam tube is used for the comparison of theoretical predictions and experiments.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25499019</pmid><doi>10.1016/j.ultramic.2014.11.022</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3991
ispartof Ultramicroscopy, 2015-04, Vol.151, p.199-210
issn 0304-3991
1879-2723
language eng
recordid cdi_proquest_miscellaneous_1770360828
source Elsevier ScienceDirect Journals
subjects Bandwidth
Computer simulation
Correlation
Decoherence
Electron optics
HRTEM
Magnetic fields
Mathematical models
Noise
Thermal magnetic noise
Transmission electron microscopy
title Thermal magnetic field noise: Electron optics and decoherence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20magnetic%20field%20noise:%20Electron%20optics%20and%20decoherence&rft.jtitle=Ultramicroscopy&rft.au=Uhlemann,%20Stephan&rft.date=2015-04-01&rft.volume=151&rft.spage=199&rft.epage=210&rft.pages=199-210&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2014.11.022&rft_dat=%3Cproquest_cross%3E1770360828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664442428&rft_id=info:pmid/25499019&rft_els_id=S0304399114002381&rfr_iscdi=true