Nitrogen-Doping-Induced Defects of a Carbon Coating Layer Facilitate Na-Storage in Electrode Materials

A nitrogen‐doped, carbon‐coated Na3V2(PO4)3 cathode material is synthesized and the formation of doping type of nitrogen‐doped in carbon coating layer is systemically investigated. Three different carbon‐nitrogen species: pyridinic N, pyrrolic N, and quaternary N are identified. The most important f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2015-01, Vol.5 (1), p.np-n/a
Hauptverfasser: Shen, Wei, Wang, Cong, Xu, Qunjie, Liu, Haimei, Wang, Yonggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page np
container_title Advanced energy materials
container_volume 5
creator Shen, Wei
Wang, Cong
Xu, Qunjie
Liu, Haimei
Wang, Yonggang
description A nitrogen‐doped, carbon‐coated Na3V2(PO4)3 cathode material is synthesized and the formation of doping type of nitrogen‐doped in carbon coating layer is systemically investigated. Three different carbon‐nitrogen species: pyridinic N, pyrrolic N, and quaternary N are identified. The most important finding is that different carbon‐nitrogen species in the carbon layer have different impacts on the improvement of the electrochemical properties of Na3V2(PO4)3. Pyridinic N and pyrrolic N significantly increase the electronic conductivity and create numerous extrinsic defects and active sites. Quaternary N only increases the electronic conductivity without creating extrinsic defects. Therefore, it is unexpectedly demonstrated that the Na3V2(PO4)3/C+N, in which with minimize content of quaternary N or exist most extrinsic defects, exhibits the best electrochemical performance, particularly the rate performance and cycling stability. For example, when the discharging rate increased from 0.2 C to 5 C, its capacity of 101.9 mAh g−1 decays to 84.3 mAh g−1 and an amazing capacity retention of 83% is achieved. Moreover, even at higher current density of 5 C, an excellent capacity retention of 93% is maintained even after 100 cycles. Nitrogen‐doped carbon coating, which is a simple and effective approach, is used to improve the electrochemical performance of a Na3V2(PO4)3 cathode material in sodium‐ion batteries and demonstrates obvious and significant modification effects. Moreover, the different impacts on the improvement of electrochemical performance by various carbon‐nitrogen species are analyzed and verified in detail.
doi_str_mv 10.1002/aenm.201400982
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770360785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770360785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5652-2d08a94b5924b2433c29dd66c900b74ae8162cf84acfc8fc683a0b3c248ce02b3</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhpfSQkOaa8-CXnpZd_SxWu0xOI4TcFz6nZuY1c4apeuVK61p_e8r42JKL9VBI5jnGTRvUbzmMOMA4h3SuJ0J4AqgMeJZccE1V6U2Cp6f31K8LK5SeoJ8VMNByouiX_sphg2N5U3Y-XFT3o_d3lHHbqgnNyUWeoZsjrENI5sHnDLDVnigyG7R-cFPOBFbY_lpChE3xPzIFkM2Y-iIPeRm9DikV8WLPhe6-lMviy-3i8_zu3L1fnk_v16VrtKVKEUHBhvVVo1QrVBSOtF0ndauAWhrhWS4Fq43Cl3vTO_yTghtppRxBKKVl8Xb09xdDD_2lCa79cnRMOBIYZ8sr2uQGmpTZfTNP-hT2Mcx_85yrfLE45Wp2YlyMaQUqbe76LcYD5aDPSZvj8nbc_JZaE7CTz_Q4T-0vV6sH_52y5Pr00S_zi7G71bXsq7st_XSfr17_Lg0j8p-kL8BsWSVmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642486424</pqid></control><display><type>article</type><title>Nitrogen-Doping-Induced Defects of a Carbon Coating Layer Facilitate Na-Storage in Electrode Materials</title><source>Wiley Online Library All Journals</source><creator>Shen, Wei ; Wang, Cong ; Xu, Qunjie ; Liu, Haimei ; Wang, Yonggang</creator><creatorcontrib>Shen, Wei ; Wang, Cong ; Xu, Qunjie ; Liu, Haimei ; Wang, Yonggang</creatorcontrib><description>A nitrogen‐doped, carbon‐coated Na3V2(PO4)3 cathode material is synthesized and the formation of doping type of nitrogen‐doped in carbon coating layer is systemically investigated. Three different carbon‐nitrogen species: pyridinic N, pyrrolic N, and quaternary N are identified. The most important finding is that different carbon‐nitrogen species in the carbon layer have different impacts on the improvement of the electrochemical properties of Na3V2(PO4)3. Pyridinic N and pyrrolic N significantly increase the electronic conductivity and create numerous extrinsic defects and active sites. Quaternary N only increases the electronic conductivity without creating extrinsic defects. Therefore, it is unexpectedly demonstrated that the Na3V2(PO4)3/C+N, in which with minimize content of quaternary N or exist most extrinsic defects, exhibits the best electrochemical performance, particularly the rate performance and cycling stability. For example, when the discharging rate increased from 0.2 C to 5 C, its capacity of 101.9 mAh g−1 decays to 84.3 mAh g−1 and an amazing capacity retention of 83% is achieved. Moreover, even at higher current density of 5 C, an excellent capacity retention of 93% is maintained even after 100 cycles. Nitrogen‐doped carbon coating, which is a simple and effective approach, is used to improve the electrochemical performance of a Na3V2(PO4)3 cathode material in sodium‐ion batteries and demonstrates obvious and significant modification effects. Moreover, the different impacts on the improvement of electrochemical performance by various carbon‐nitrogen species are analyzed and verified in detail.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201400982</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Carbon ; carbon coatings ; cathode materials ; Cathodes ; Coating ; Defects ; Electrochemical analysis ; Electronics ; Impact analysis ; Nitrogen ; nitrogen doping ; Rechargeable batteries ; sodium-ion batteries</subject><ispartof>Advanced energy materials, 2015-01, Vol.5 (1), p.np-n/a</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5652-2d08a94b5924b2433c29dd66c900b74ae8162cf84acfc8fc683a0b3c248ce02b3</citedby><cites>FETCH-LOGICAL-c5652-2d08a94b5924b2433c29dd66c900b74ae8162cf84acfc8fc683a0b3c248ce02b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201400982$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201400982$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Xu, Qunjie</creatorcontrib><creatorcontrib>Liu, Haimei</creatorcontrib><creatorcontrib>Wang, Yonggang</creatorcontrib><title>Nitrogen-Doping-Induced Defects of a Carbon Coating Layer Facilitate Na-Storage in Electrode Materials</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>A nitrogen‐doped, carbon‐coated Na3V2(PO4)3 cathode material is synthesized and the formation of doping type of nitrogen‐doped in carbon coating layer is systemically investigated. Three different carbon‐nitrogen species: pyridinic N, pyrrolic N, and quaternary N are identified. The most important finding is that different carbon‐nitrogen species in the carbon layer have different impacts on the improvement of the electrochemical properties of Na3V2(PO4)3. Pyridinic N and pyrrolic N significantly increase the electronic conductivity and create numerous extrinsic defects and active sites. Quaternary N only increases the electronic conductivity without creating extrinsic defects. Therefore, it is unexpectedly demonstrated that the Na3V2(PO4)3/C+N, in which with minimize content of quaternary N or exist most extrinsic defects, exhibits the best electrochemical performance, particularly the rate performance and cycling stability. For example, when the discharging rate increased from 0.2 C to 5 C, its capacity of 101.9 mAh g−1 decays to 84.3 mAh g−1 and an amazing capacity retention of 83% is achieved. Moreover, even at higher current density of 5 C, an excellent capacity retention of 93% is maintained even after 100 cycles. Nitrogen‐doped carbon coating, which is a simple and effective approach, is used to improve the electrochemical performance of a Na3V2(PO4)3 cathode material in sodium‐ion batteries and demonstrates obvious and significant modification effects. Moreover, the different impacts on the improvement of electrochemical performance by various carbon‐nitrogen species are analyzed and verified in detail.</description><subject>Carbon</subject><subject>carbon coatings</subject><subject>cathode materials</subject><subject>Cathodes</subject><subject>Coating</subject><subject>Defects</subject><subject>Electrochemical analysis</subject><subject>Electronics</subject><subject>Impact analysis</subject><subject>Nitrogen</subject><subject>nitrogen doping</subject><subject>Rechargeable batteries</subject><subject>sodium-ion batteries</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhpfSQkOaa8-CXnpZd_SxWu0xOI4TcFz6nZuY1c4apeuVK61p_e8r42JKL9VBI5jnGTRvUbzmMOMA4h3SuJ0J4AqgMeJZccE1V6U2Cp6f31K8LK5SeoJ8VMNByouiX_sphg2N5U3Y-XFT3o_d3lHHbqgnNyUWeoZsjrENI5sHnDLDVnigyG7R-cFPOBFbY_lpChE3xPzIFkM2Y-iIPeRm9DikV8WLPhe6-lMviy-3i8_zu3L1fnk_v16VrtKVKEUHBhvVVo1QrVBSOtF0ndauAWhrhWS4Fq43Cl3vTO_yTghtppRxBKKVl8Xb09xdDD_2lCa79cnRMOBIYZ8sr2uQGmpTZfTNP-hT2Mcx_85yrfLE45Wp2YlyMaQUqbe76LcYD5aDPSZvj8nbc_JZaE7CTz_Q4T-0vV6sH_52y5Pr00S_zi7G71bXsq7st_XSfr17_Lg0j8p-kL8BsWSVmg</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Shen, Wei</creator><creator>Wang, Cong</creator><creator>Xu, Qunjie</creator><creator>Liu, Haimei</creator><creator>Wang, Yonggang</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Nitrogen-Doping-Induced Defects of a Carbon Coating Layer Facilitate Na-Storage in Electrode Materials</title><author>Shen, Wei ; Wang, Cong ; Xu, Qunjie ; Liu, Haimei ; Wang, Yonggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5652-2d08a94b5924b2433c29dd66c900b74ae8162cf84acfc8fc683a0b3c248ce02b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon</topic><topic>carbon coatings</topic><topic>cathode materials</topic><topic>Cathodes</topic><topic>Coating</topic><topic>Defects</topic><topic>Electrochemical analysis</topic><topic>Electronics</topic><topic>Impact analysis</topic><topic>Nitrogen</topic><topic>nitrogen doping</topic><topic>Rechargeable batteries</topic><topic>sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Xu, Qunjie</creatorcontrib><creatorcontrib>Liu, Haimei</creatorcontrib><creatorcontrib>Wang, Yonggang</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Wei</au><au>Wang, Cong</au><au>Xu, Qunjie</au><au>Liu, Haimei</au><au>Wang, Yonggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-Doping-Induced Defects of a Carbon Coating Layer Facilitate Na-Storage in Electrode Materials</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>A nitrogen‐doped, carbon‐coated Na3V2(PO4)3 cathode material is synthesized and the formation of doping type of nitrogen‐doped in carbon coating layer is systemically investigated. Three different carbon‐nitrogen species: pyridinic N, pyrrolic N, and quaternary N are identified. The most important finding is that different carbon‐nitrogen species in the carbon layer have different impacts on the improvement of the electrochemical properties of Na3V2(PO4)3. Pyridinic N and pyrrolic N significantly increase the electronic conductivity and create numerous extrinsic defects and active sites. Quaternary N only increases the electronic conductivity without creating extrinsic defects. Therefore, it is unexpectedly demonstrated that the Na3V2(PO4)3/C+N, in which with minimize content of quaternary N or exist most extrinsic defects, exhibits the best electrochemical performance, particularly the rate performance and cycling stability. For example, when the discharging rate increased from 0.2 C to 5 C, its capacity of 101.9 mAh g−1 decays to 84.3 mAh g−1 and an amazing capacity retention of 83% is achieved. Moreover, even at higher current density of 5 C, an excellent capacity retention of 93% is maintained even after 100 cycles. Nitrogen‐doped carbon coating, which is a simple and effective approach, is used to improve the electrochemical performance of a Na3V2(PO4)3 cathode material in sodium‐ion batteries and demonstrates obvious and significant modification effects. Moreover, the different impacts on the improvement of electrochemical performance by various carbon‐nitrogen species are analyzed and verified in detail.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201400982</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2015-01, Vol.5 (1), p.np-n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_miscellaneous_1770360785
source Wiley Online Library All Journals
subjects Carbon
carbon coatings
cathode materials
Cathodes
Coating
Defects
Electrochemical analysis
Electronics
Impact analysis
Nitrogen
nitrogen doping
Rechargeable batteries
sodium-ion batteries
title Nitrogen-Doping-Induced Defects of a Carbon Coating Layer Facilitate Na-Storage in Electrode Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-Doping-Induced%20Defects%20of%20a%20Carbon%20Coating%20Layer%20Facilitate%20Na-Storage%20in%20Electrode%20Materials&rft.jtitle=Advanced%20energy%20materials&rft.au=Shen,%20Wei&rft.date=2015-01-01&rft.volume=5&rft.issue=1&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201400982&rft_dat=%3Cproquest_cross%3E1770360785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642486424&rft_id=info:pmid/&rfr_iscdi=true