Individual snag detection using neighborhood attribute filtered airborne lidar data

The ability to estimate and monitor standing dead trees (snags) has been difficult due to their irregular and sparse distribution, often requiring intensive sampling methods to obtain statistically significant estimates. This study presents a new method for estimating and monitoring snags using neig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2015-06, Vol.163, p.165-179
Hauptverfasser: Wing, Brian M., Ritchie, Martin W., Boston, Kevin, Cohen, Warren B., Olsen, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue
container_start_page 165
container_title Remote sensing of environment
container_volume 163
creator Wing, Brian M.
Ritchie, Martin W.
Boston, Kevin
Cohen, Warren B.
Olsen, Michael J.
description The ability to estimate and monitor standing dead trees (snags) has been difficult due to their irregular and sparse distribution, often requiring intensive sampling methods to obtain statistically significant estimates. This study presents a new method for estimating and monitoring snags using neighborhood attribute filtered airborne discrete-return lidar data. The method first develops and then applies an automated filtering algorithm that utilizes three dimensional neighborhood lidar point-based intensity and density statistics to remove lidar points associated with live trees and retain lidar points associated with snags. A traditional airborne lidar individual-tree detection procedure is then applied to the snag-filtered lidar point cloud, resulting in stem map of identified snags with height estimates. The filtering algorithm was developed using training datasets comprised of four different forest types in wide range of stand conditions, and then applied to independent data to determine successful snag detection rates. Detection rates ranged from 43 to 100%, increasing as the size of snags increased. The overall detection rate for snags with DBH≥25cm was 56% (±2.9%) with low commission error rates. The method provides the ability to estimate snag density and stem map a large proportion of snags across the landscape. The resulting information can be used to analyze the spatial distribution of snags, provide a better understanding of wildlife snag use dynamics, assess achievement of stocking standard requirements, and bring more clarity to snag stocking standards. •Introduces new method for detecting snags using filtered airborne lidar data•Highlights applications for the method: snag density estimates and snag stem mapping•Introduces the concept of neighborhood attribute lidar point cloud filtering•Neighborhood attribute filtering can provide an enhanced framework for lidar analysis.
doi_str_mv 10.1016/j.rse.2015.03.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770360600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425715001091</els_id><sourcerecordid>1770360600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-bf408cecd9fcb4517874382def0677470c63a2c18b1b0f3557553214471715ce3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78AG89emmdaZKmiydZ_ALBg3oOaTJds9R2TVLBf2-W9ayngZnnHXgfxi4QKgRsrjZViFTVgLICXgHyA7bAVi1LUCAO2QKAi1LUUh2zkxg3kMFW4YK9PI7Of3k3m6GIo1kXjhLZ5KexmKMf18VIfv3eTeF9mlxhUgq-mxMVvR8SBcorH_J1pGLwzoTCmWTO2FFvhkjnv_OUvd3dvq4eyqfn-8fVzVNpBeep7HoBrSXrlr3thETVKsHb2lEPjVJCgW24qS22HXbQcymVlLxGIRQqlJb4Kbvc_92G6XOmmPSHj5aGwYw0zVGjUsAbaHL3_1FetzXWkmcU96gNU4yBer0N_sOEb42gd671RmfXeudaA9fZdc5c7zOU6355CjpaT6Ml50O2qd3k_0j_AGfwhrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732821253</pqid></control><display><type>article</type><title>Individual snag detection using neighborhood attribute filtered airborne lidar data</title><source>Elsevier ScienceDirect Journals</source><creator>Wing, Brian M. ; Ritchie, Martin W. ; Boston, Kevin ; Cohen, Warren B. ; Olsen, Michael J.</creator><creatorcontrib>Wing, Brian M. ; Ritchie, Martin W. ; Boston, Kevin ; Cohen, Warren B. ; Olsen, Michael J.</creatorcontrib><description>The ability to estimate and monitor standing dead trees (snags) has been difficult due to their irregular and sparse distribution, often requiring intensive sampling methods to obtain statistically significant estimates. This study presents a new method for estimating and monitoring snags using neighborhood attribute filtered airborne discrete-return lidar data. The method first develops and then applies an automated filtering algorithm that utilizes three dimensional neighborhood lidar point-based intensity and density statistics to remove lidar points associated with live trees and retain lidar points associated with snags. A traditional airborne lidar individual-tree detection procedure is then applied to the snag-filtered lidar point cloud, resulting in stem map of identified snags with height estimates. The filtering algorithm was developed using training datasets comprised of four different forest types in wide range of stand conditions, and then applied to independent data to determine successful snag detection rates. Detection rates ranged from 43 to 100%, increasing as the size of snags increased. The overall detection rate for snags with DBH≥25cm was 56% (±2.9%) with low commission error rates. The method provides the ability to estimate snag density and stem map a large proportion of snags across the landscape. The resulting information can be used to analyze the spatial distribution of snags, provide a better understanding of wildlife snag use dynamics, assess achievement of stocking standard requirements, and bring more clarity to snag stocking standards. •Introduces new method for detecting snags using filtered airborne lidar data•Highlights applications for the method: snag density estimates and snag stem mapping•Introduces the concept of neighborhood attribute lidar point cloud filtering•Neighborhood attribute filtering can provide an enhanced framework for lidar analysis.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2015.03.013</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Airborne lidar ; Algorithms ; Density ; Estimates ; Filtering ; Filtration ; Forestry ; Lidar ; Lidar filtering ; Neighborhood attribute lidar filtering ; Snag density ; Snag detection ; Snags ; Stockings</subject><ispartof>Remote sensing of environment, 2015-06, Vol.163, p.165-179</ispartof><rights>2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-bf408cecd9fcb4517874382def0677470c63a2c18b1b0f3557553214471715ce3</citedby><cites>FETCH-LOGICAL-c433t-bf408cecd9fcb4517874382def0677470c63a2c18b1b0f3557553214471715ce3</cites><orcidid>0000-0003-3144-9532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0034425715001091$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wing, Brian M.</creatorcontrib><creatorcontrib>Ritchie, Martin W.</creatorcontrib><creatorcontrib>Boston, Kevin</creatorcontrib><creatorcontrib>Cohen, Warren B.</creatorcontrib><creatorcontrib>Olsen, Michael J.</creatorcontrib><title>Individual snag detection using neighborhood attribute filtered airborne lidar data</title><title>Remote sensing of environment</title><description>The ability to estimate and monitor standing dead trees (snags) has been difficult due to their irregular and sparse distribution, often requiring intensive sampling methods to obtain statistically significant estimates. This study presents a new method for estimating and monitoring snags using neighborhood attribute filtered airborne discrete-return lidar data. The method first develops and then applies an automated filtering algorithm that utilizes three dimensional neighborhood lidar point-based intensity and density statistics to remove lidar points associated with live trees and retain lidar points associated with snags. A traditional airborne lidar individual-tree detection procedure is then applied to the snag-filtered lidar point cloud, resulting in stem map of identified snags with height estimates. The filtering algorithm was developed using training datasets comprised of four different forest types in wide range of stand conditions, and then applied to independent data to determine successful snag detection rates. Detection rates ranged from 43 to 100%, increasing as the size of snags increased. The overall detection rate for snags with DBH≥25cm was 56% (±2.9%) with low commission error rates. The method provides the ability to estimate snag density and stem map a large proportion of snags across the landscape. The resulting information can be used to analyze the spatial distribution of snags, provide a better understanding of wildlife snag use dynamics, assess achievement of stocking standard requirements, and bring more clarity to snag stocking standards. •Introduces new method for detecting snags using filtered airborne lidar data•Highlights applications for the method: snag density estimates and snag stem mapping•Introduces the concept of neighborhood attribute lidar point cloud filtering•Neighborhood attribute filtering can provide an enhanced framework for lidar analysis.</description><subject>Airborne lidar</subject><subject>Algorithms</subject><subject>Density</subject><subject>Estimates</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Forestry</subject><subject>Lidar</subject><subject>Lidar filtering</subject><subject>Neighborhood attribute lidar filtering</subject><subject>Snag density</subject><subject>Snag detection</subject><subject>Snags</subject><subject>Stockings</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouH78AG89emmdaZKmiydZ_ALBg3oOaTJds9R2TVLBf2-W9ayngZnnHXgfxi4QKgRsrjZViFTVgLICXgHyA7bAVi1LUCAO2QKAi1LUUh2zkxg3kMFW4YK9PI7Of3k3m6GIo1kXjhLZ5KexmKMf18VIfv3eTeF9mlxhUgq-mxMVvR8SBcorH_J1pGLwzoTCmWTO2FFvhkjnv_OUvd3dvq4eyqfn-8fVzVNpBeep7HoBrSXrlr3thETVKsHb2lEPjVJCgW24qS22HXbQcymVlLxGIRQqlJb4Kbvc_92G6XOmmPSHj5aGwYw0zVGjUsAbaHL3_1FetzXWkmcU96gNU4yBer0N_sOEb42gd671RmfXeudaA9fZdc5c7zOU6355CjpaT6Ml50O2qd3k_0j_AGfwhrI</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Wing, Brian M.</creator><creator>Ritchie, Martin W.</creator><creator>Boston, Kevin</creator><creator>Cohen, Warren B.</creator><creator>Olsen, Michael J.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3144-9532</orcidid></search><sort><creationdate>20150601</creationdate><title>Individual snag detection using neighborhood attribute filtered airborne lidar data</title><author>Wing, Brian M. ; Ritchie, Martin W. ; Boston, Kevin ; Cohen, Warren B. ; Olsen, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-bf408cecd9fcb4517874382def0677470c63a2c18b1b0f3557553214471715ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Airborne lidar</topic><topic>Algorithms</topic><topic>Density</topic><topic>Estimates</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Forestry</topic><topic>Lidar</topic><topic>Lidar filtering</topic><topic>Neighborhood attribute lidar filtering</topic><topic>Snag density</topic><topic>Snag detection</topic><topic>Snags</topic><topic>Stockings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wing, Brian M.</creatorcontrib><creatorcontrib>Ritchie, Martin W.</creatorcontrib><creatorcontrib>Boston, Kevin</creatorcontrib><creatorcontrib>Cohen, Warren B.</creatorcontrib><creatorcontrib>Olsen, Michael J.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wing, Brian M.</au><au>Ritchie, Martin W.</au><au>Boston, Kevin</au><au>Cohen, Warren B.</au><au>Olsen, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individual snag detection using neighborhood attribute filtered airborne lidar data</atitle><jtitle>Remote sensing of environment</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>163</volume><spage>165</spage><epage>179</epage><pages>165-179</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>The ability to estimate and monitor standing dead trees (snags) has been difficult due to their irregular and sparse distribution, often requiring intensive sampling methods to obtain statistically significant estimates. This study presents a new method for estimating and monitoring snags using neighborhood attribute filtered airborne discrete-return lidar data. The method first develops and then applies an automated filtering algorithm that utilizes three dimensional neighborhood lidar point-based intensity and density statistics to remove lidar points associated with live trees and retain lidar points associated with snags. A traditional airborne lidar individual-tree detection procedure is then applied to the snag-filtered lidar point cloud, resulting in stem map of identified snags with height estimates. The filtering algorithm was developed using training datasets comprised of four different forest types in wide range of stand conditions, and then applied to independent data to determine successful snag detection rates. Detection rates ranged from 43 to 100%, increasing as the size of snags increased. The overall detection rate for snags with DBH≥25cm was 56% (±2.9%) with low commission error rates. The method provides the ability to estimate snag density and stem map a large proportion of snags across the landscape. The resulting information can be used to analyze the spatial distribution of snags, provide a better understanding of wildlife snag use dynamics, assess achievement of stocking standard requirements, and bring more clarity to snag stocking standards. •Introduces new method for detecting snags using filtered airborne lidar data•Highlights applications for the method: snag density estimates and snag stem mapping•Introduces the concept of neighborhood attribute lidar point cloud filtering•Neighborhood attribute filtering can provide an enhanced framework for lidar analysis.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2015.03.013</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3144-9532</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2015-06, Vol.163, p.165-179
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_miscellaneous_1770360600
source Elsevier ScienceDirect Journals
subjects Airborne lidar
Algorithms
Density
Estimates
Filtering
Filtration
Forestry
Lidar
Lidar filtering
Neighborhood attribute lidar filtering
Snag density
Snag detection
Snags
Stockings
title Individual snag detection using neighborhood attribute filtered airborne lidar data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individual%20snag%20detection%20using%20neighborhood%20attribute%20filtered%20airborne%20lidar%20data&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Wing,%20Brian%20M.&rft.date=2015-06-01&rft.volume=163&rft.spage=165&rft.epage=179&rft.pages=165-179&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2015.03.013&rft_dat=%3Cproquest_cross%3E1770360600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732821253&rft_id=info:pmid/&rft_els_id=S0034425715001091&rfr_iscdi=true