Use of Classification Trees and Rule-Based Methods to Predict Shapes of Nano-Aggregates of Reinforcement Fillers
While manufacturing composite materials, reinforcement fillers inevitable collide with each other and subsequently they congregate to aggregates with different shapes. The shape of these nanoparticles aggregates are of great significance for the mechanical material properties and in consequence, kno...
Gespeichert in:
Veröffentlicht in: | Applied mechanics and materials 2015-10, Vol.799-800 (Mechanical and Electrical Technology VII), p.130-134 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134 |
---|---|
container_issue | Mechanical and Electrical Technology VII |
container_start_page | 130 |
container_title | Applied mechanics and materials |
container_volume | 799-800 |
creator | Ibarretxe, J. Jimbert, Pello Fernandez-Martinez, R. Iturrondobeitia, M. Guraya-Díez, T. |
description | While manufacturing composite materials, reinforcement fillers inevitable collide with each other and subsequently they congregate to aggregates with different shapes. The shape of these nanoparticles aggregates are of great significance for the mechanical material properties and in consequence, knowing the percentage of aggregates of each shape within of a specific group of shapes can give an idea of the final properties of the material. This work classifies aggregates, a new dataset of 5713 carbon black aggregates gathered based on transmission electron microscopy image processing, using several classification trees and rule-based methods. Based on these methods several models are built, trained and tested to perform the classification. And then, the most reliable and accurate model to classify aggregates is selected, obtaining a testing accuracy of the 74.57% according to their shape. |
doi_str_mv | 10.4028/www.scientific.net/AMM.799-800.130 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770357148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770357148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1810-67090d06d558d4b48bcb9cc341659e48278c09fd69cdddcf36affa00f24a18bc3</originalsourceid><addsrcrecordid>eNqNkdFqHCEUQKVNoUnafxD6UgozuY4zjj5utk1SyLYlTaBv4up1d8LsuFGXpX9f0y0k5KlPgh6OVw8hnxjULTTybL_f18kOOOXBD7aeMJ_NFou6V6qSADXj8IocMyGaqm9l85qccOCSd4KzX0d_D6BSnIu35CSlewDRslYek-1dQho8nY8mpUexyUOY6G1ETNRMjt7sRqzOTUJHF5jXwSWaA_0R0Q02059rsy1gEXwzU6hmq1XElcmHrRscJh-ixU0Zml4M44gxvSNvvBkTvv-3npK7iy-386vq-vvl1_nsurJMMqhEDwocCNd10rXLVi7tUlnLWyY6heWBvbSgvBPKOues58J4bwB80xpWYH5KPh682xgedpiy3gzJ4jiaCcMuadb3wLu-fEJBP7xA78MuTmW6QjWdglYJKNT5gbIxpBTR620cNib-1gz0YyFdCumnQroU0qWQLoV0KaRLoSL5fJDkaKaU0a6f3fX_mj9YEKIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1725904960</pqid></control><display><type>article</type><title>Use of Classification Trees and Rule-Based Methods to Predict Shapes of Nano-Aggregates of Reinforcement Fillers</title><source>Scientific.net Journals</source><creator>Ibarretxe, J. ; Jimbert, Pello ; Fernandez-Martinez, R. ; Iturrondobeitia, M. ; Guraya-Díez, T.</creator><creatorcontrib>Ibarretxe, J. ; Jimbert, Pello ; Fernandez-Martinez, R. ; Iturrondobeitia, M. ; Guraya-Díez, T.</creatorcontrib><description>While manufacturing composite materials, reinforcement fillers inevitable collide with each other and subsequently they congregate to aggregates with different shapes. The shape of these nanoparticles aggregates are of great significance for the mechanical material properties and in consequence, knowing the percentage of aggregates of each shape within of a specific group of shapes can give an idea of the final properties of the material. This work classifies aggregates, a new dataset of 5713 carbon black aggregates gathered based on transmission electron microscopy image processing, using several classification trees and rule-based methods. Based on these methods several models are built, trained and tested to perform the classification. And then, the most reliable and accurate model to classify aggregates is selected, obtaining a testing accuracy of the 74.57% according to their shape.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 303835631X</identifier><identifier>ISBN: 9783038356318</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.799-800.130</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Aggregates ; Classification ; Fillers ; Image processing ; Nanoparticles ; Nanostructure ; Reinforcement ; Trees</subject><ispartof>Applied mechanics and materials, 2015-10, Vol.799-800 (Mechanical and Electrical Technology VII), p.130-134</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1810-67090d06d558d4b48bcb9cc341659e48278c09fd69cdddcf36affa00f24a18bc3</cites><orcidid>0000-0001-8652-0506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4211?width=600</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ibarretxe, J.</creatorcontrib><creatorcontrib>Jimbert, Pello</creatorcontrib><creatorcontrib>Fernandez-Martinez, R.</creatorcontrib><creatorcontrib>Iturrondobeitia, M.</creatorcontrib><creatorcontrib>Guraya-Díez, T.</creatorcontrib><title>Use of Classification Trees and Rule-Based Methods to Predict Shapes of Nano-Aggregates of Reinforcement Fillers</title><title>Applied mechanics and materials</title><description>While manufacturing composite materials, reinforcement fillers inevitable collide with each other and subsequently they congregate to aggregates with different shapes. The shape of these nanoparticles aggregates are of great significance for the mechanical material properties and in consequence, knowing the percentage of aggregates of each shape within of a specific group of shapes can give an idea of the final properties of the material. This work classifies aggregates, a new dataset of 5713 carbon black aggregates gathered based on transmission electron microscopy image processing, using several classification trees and rule-based methods. Based on these methods several models are built, trained and tested to perform the classification. And then, the most reliable and accurate model to classify aggregates is selected, obtaining a testing accuracy of the 74.57% according to their shape.</description><subject>Aggregates</subject><subject>Classification</subject><subject>Fillers</subject><subject>Image processing</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Reinforcement</subject><subject>Trees</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>303835631X</isbn><isbn>9783038356318</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkdFqHCEUQKVNoUnafxD6UgozuY4zjj5utk1SyLYlTaBv4up1d8LsuFGXpX9f0y0k5KlPgh6OVw8hnxjULTTybL_f18kOOOXBD7aeMJ_NFou6V6qSADXj8IocMyGaqm9l85qccOCSd4KzX0d_D6BSnIu35CSlewDRslYek-1dQho8nY8mpUexyUOY6G1ETNRMjt7sRqzOTUJHF5jXwSWaA_0R0Q02059rsy1gEXwzU6hmq1XElcmHrRscJh-ixU0Zml4M44gxvSNvvBkTvv-3npK7iy-386vq-vvl1_nsurJMMqhEDwocCNd10rXLVi7tUlnLWyY6heWBvbSgvBPKOues58J4bwB80xpWYH5KPh682xgedpiy3gzJ4jiaCcMuadb3wLu-fEJBP7xA78MuTmW6QjWdglYJKNT5gbIxpBTR620cNib-1gz0YyFdCumnQroU0qWQLoV0KaRLoSL5fJDkaKaU0a6f3fX_mj9YEKIw</recordid><startdate>20151019</startdate><enddate>20151019</enddate><creator>Ibarretxe, J.</creator><creator>Jimbert, Pello</creator><creator>Fernandez-Martinez, R.</creator><creator>Iturrondobeitia, M.</creator><creator>Guraya-Díez, T.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8652-0506</orcidid></search><sort><creationdate>20151019</creationdate><title>Use of Classification Trees and Rule-Based Methods to Predict Shapes of Nano-Aggregates of Reinforcement Fillers</title><author>Ibarretxe, J. ; Jimbert, Pello ; Fernandez-Martinez, R. ; Iturrondobeitia, M. ; Guraya-Díez, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1810-67090d06d558d4b48bcb9cc341659e48278c09fd69cdddcf36affa00f24a18bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aggregates</topic><topic>Classification</topic><topic>Fillers</topic><topic>Image processing</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Reinforcement</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibarretxe, J.</creatorcontrib><creatorcontrib>Jimbert, Pello</creatorcontrib><creatorcontrib>Fernandez-Martinez, R.</creatorcontrib><creatorcontrib>Iturrondobeitia, M.</creatorcontrib><creatorcontrib>Guraya-Díez, T.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied mechanics and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibarretxe, J.</au><au>Jimbert, Pello</au><au>Fernandez-Martinez, R.</au><au>Iturrondobeitia, M.</au><au>Guraya-Díez, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Classification Trees and Rule-Based Methods to Predict Shapes of Nano-Aggregates of Reinforcement Fillers</atitle><jtitle>Applied mechanics and materials</jtitle><date>2015-10-19</date><risdate>2015</risdate><volume>799-800</volume><issue>Mechanical and Electrical Technology VII</issue><spage>130</spage><epage>134</epage><pages>130-134</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>303835631X</isbn><isbn>9783038356318</isbn><abstract>While manufacturing composite materials, reinforcement fillers inevitable collide with each other and subsequently they congregate to aggregates with different shapes. The shape of these nanoparticles aggregates are of great significance for the mechanical material properties and in consequence, knowing the percentage of aggregates of each shape within of a specific group of shapes can give an idea of the final properties of the material. This work classifies aggregates, a new dataset of 5713 carbon black aggregates gathered based on transmission electron microscopy image processing, using several classification trees and rule-based methods. Based on these methods several models are built, trained and tested to perform the classification. And then, the most reliable and accurate model to classify aggregates is selected, obtaining a testing accuracy of the 74.57% according to their shape.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.799-800.130</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8652-0506</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied mechanics and materials, 2015-10, Vol.799-800 (Mechanical and Electrical Technology VII), p.130-134 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770357148 |
source | Scientific.net Journals |
subjects | Aggregates Classification Fillers Image processing Nanoparticles Nanostructure Reinforcement Trees |
title | Use of Classification Trees and Rule-Based Methods to Predict Shapes of Nano-Aggregates of Reinforcement Fillers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Classification%20Trees%20and%20Rule-Based%20Methods%20to%20Predict%20Shapes%20of%20Nano-Aggregates%20of%20Reinforcement%20Fillers&rft.jtitle=Applied%20mechanics%20and%20materials&rft.au=Ibarretxe,%20J.&rft.date=2015-10-19&rft.volume=799-800&rft.issue=Mechanical%20and%20Electrical%20Technology%20VII&rft.spage=130&rft.epage=134&rft.pages=130-134&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=303835631X&rft.isbn_list=9783038356318&rft_id=info:doi/10.4028/www.scientific.net/AMM.799-800.130&rft_dat=%3Cproquest_cross%3E1770357148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1725904960&rft_id=info:pmid/&rfr_iscdi=true |