Initialization strategies for optimization of dynamic systems

•Initialization strategies for large-scale differential and algebraic equations.•Structural decomposition into multiple independent sets for successive solution.•Identification of infeasible constraints with pre-solve decomposition.•Initialization cases with mechanical, chemical, aerospace, and ener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2015-07, Vol.78, p.39-50
Hauptverfasser: Safdarnejad, Seyed Mostafa, Hedengren, John D., Lewis, Nicholas R., Haseltine, Eric L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue
container_start_page 39
container_title Computers & chemical engineering
container_volume 78
creator Safdarnejad, Seyed Mostafa
Hedengren, John D.
Lewis, Nicholas R.
Haseltine, Eric L.
description •Initialization strategies for large-scale differential and algebraic equations.•Structural decomposition into multiple independent sets for successive solution.•Identification of infeasible constraints with pre-solve decomposition.•Initialization cases with mechanical, chemical, aerospace, and energy applications. For dynamic optimization applications, real-time solution reliability is improved if there is an initialized prior solution that is sufficiently close to the intended solution. This paper details several initialization strategies that are useful for obtaining an initial solution. Methods include warm start from a prior solution, linearization, structural decomposition, and an incremental unbounding of decision variables that leads up to solving the originally intended problem. Even when initialization is not required to solve a dynamic optimization problem, a staged initialization approach sometimes leads to an overall faster solution time when compared to a single optimization attempt. Several challenging optimization problems are detailed that include a high-index differential and algebraic equation pendulum model, a standard reactor model used in many benchmark tests, a tethered aerial vehicle, and smart grid energy storage. These applications are representative of a larger class of applications resulting from the simultaneous approach to optimization of dynamic systems.
doi_str_mv 10.1016/j.compchemeng.2015.04.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770356870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135415001179</els_id><sourcerecordid>1770356870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-29c5f214813dec177099169c26ac988a06e469c70f1082e11fe331cd5536d3923</originalsourceid><addsrcrecordid>eNqNkM1LxDAQxYMouK7-D_XmpXWm6Udy8CDFj4UFL3oOIZ2uWdqmJllh_evtsgoevcww_OY9eI-xa4QMAavbbWbcMJl3GmjcZDlgmUGRzeSELVDUPC14XZ6yBYAUKfKyOGcXIWwBIC-EWLC71Wij1b390tG6MQnR60gbSyHpnE_cFO3wy1yXtPtRD9YkYR8iDeGSnXW6D3T1s5fs7fHhtXlO1y9Pq-Z-nRouMaa5NGWXYyGQt2SwrkFKrKTJK22kEBoqKuazhg5B5ITYEedo2rLkVctlzpfs5ug7efexoxDVYIOhvtcjuV1QB0teVmKeSyaPr8a7EDx1avJ20H6vENShMrVVfypTh8oUFGoms7Y5amnO8mnJq2AsjYZa68lE1Tr7D5dv2zx6vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770356870</pqid></control><display><type>article</type><title>Initialization strategies for optimization of dynamic systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Safdarnejad, Seyed Mostafa ; Hedengren, John D. ; Lewis, Nicholas R. ; Haseltine, Eric L.</creator><creatorcontrib>Safdarnejad, Seyed Mostafa ; Hedengren, John D. ; Lewis, Nicholas R. ; Haseltine, Eric L.</creatorcontrib><description>•Initialization strategies for large-scale differential and algebraic equations.•Structural decomposition into multiple independent sets for successive solution.•Identification of infeasible constraints with pre-solve decomposition.•Initialization cases with mechanical, chemical, aerospace, and energy applications. For dynamic optimization applications, real-time solution reliability is improved if there is an initialized prior solution that is sufficiently close to the intended solution. This paper details several initialization strategies that are useful for obtaining an initial solution. Methods include warm start from a prior solution, linearization, structural decomposition, and an incremental unbounding of decision variables that leads up to solving the originally intended problem. Even when initialization is not required to solve a dynamic optimization problem, a staged initialization approach sometimes leads to an overall faster solution time when compared to a single optimization attempt. Several challenging optimization problems are detailed that include a high-index differential and algebraic equation pendulum model, a standard reactor model used in many benchmark tests, a tethered aerial vehicle, and smart grid energy storage. These applications are representative of a larger class of applications resulting from the simultaneous approach to optimization of dynamic systems.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2015.04.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algebra ; Decomposition ; Differential algebraic equations ; Differential equations ; Dynamic optimization ; Dynamical systems ; Dynamics ; Initialization ; Large-scale ; Mathematical models ; Optimization ; Pendulums ; Smart grid energy system ; Strategy</subject><ispartof>Computers &amp; chemical engineering, 2015-07, Vol.78, p.39-50</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-29c5f214813dec177099169c26ac988a06e469c70f1082e11fe331cd5536d3923</citedby><cites>FETCH-LOGICAL-c391t-29c5f214813dec177099169c26ac988a06e469c70f1082e11fe331cd5536d3923</cites><orcidid>0000-0002-5535-5277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compchemeng.2015.04.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Safdarnejad, Seyed Mostafa</creatorcontrib><creatorcontrib>Hedengren, John D.</creatorcontrib><creatorcontrib>Lewis, Nicholas R.</creatorcontrib><creatorcontrib>Haseltine, Eric L.</creatorcontrib><title>Initialization strategies for optimization of dynamic systems</title><title>Computers &amp; chemical engineering</title><description>•Initialization strategies for large-scale differential and algebraic equations.•Structural decomposition into multiple independent sets for successive solution.•Identification of infeasible constraints with pre-solve decomposition.•Initialization cases with mechanical, chemical, aerospace, and energy applications. For dynamic optimization applications, real-time solution reliability is improved if there is an initialized prior solution that is sufficiently close to the intended solution. This paper details several initialization strategies that are useful for obtaining an initial solution. Methods include warm start from a prior solution, linearization, structural decomposition, and an incremental unbounding of decision variables that leads up to solving the originally intended problem. Even when initialization is not required to solve a dynamic optimization problem, a staged initialization approach sometimes leads to an overall faster solution time when compared to a single optimization attempt. Several challenging optimization problems are detailed that include a high-index differential and algebraic equation pendulum model, a standard reactor model used in many benchmark tests, a tethered aerial vehicle, and smart grid energy storage. These applications are representative of a larger class of applications resulting from the simultaneous approach to optimization of dynamic systems.</description><subject>Algebra</subject><subject>Decomposition</subject><subject>Differential algebraic equations</subject><subject>Differential equations</subject><subject>Dynamic optimization</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Initialization</subject><subject>Large-scale</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Pendulums</subject><subject>Smart grid energy system</subject><subject>Strategy</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkM1LxDAQxYMouK7-D_XmpXWm6Udy8CDFj4UFL3oOIZ2uWdqmJllh_evtsgoevcww_OY9eI-xa4QMAavbbWbcMJl3GmjcZDlgmUGRzeSELVDUPC14XZ6yBYAUKfKyOGcXIWwBIC-EWLC71Wij1b390tG6MQnR60gbSyHpnE_cFO3wy1yXtPtRD9YkYR8iDeGSnXW6D3T1s5fs7fHhtXlO1y9Pq-Z-nRouMaa5NGWXYyGQt2SwrkFKrKTJK22kEBoqKuazhg5B5ITYEedo2rLkVctlzpfs5ug7efexoxDVYIOhvtcjuV1QB0teVmKeSyaPr8a7EDx1avJ20H6vENShMrVVfypTh8oUFGoms7Y5amnO8mnJq2AsjYZa68lE1Tr7D5dv2zx6vA</recordid><startdate>20150712</startdate><enddate>20150712</enddate><creator>Safdarnejad, Seyed Mostafa</creator><creator>Hedengren, John D.</creator><creator>Lewis, Nicholas R.</creator><creator>Haseltine, Eric L.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5535-5277</orcidid></search><sort><creationdate>20150712</creationdate><title>Initialization strategies for optimization of dynamic systems</title><author>Safdarnejad, Seyed Mostafa ; Hedengren, John D. ; Lewis, Nicholas R. ; Haseltine, Eric L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-29c5f214813dec177099169c26ac988a06e469c70f1082e11fe331cd5536d3923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Decomposition</topic><topic>Differential algebraic equations</topic><topic>Differential equations</topic><topic>Dynamic optimization</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Initialization</topic><topic>Large-scale</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Pendulums</topic><topic>Smart grid energy system</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safdarnejad, Seyed Mostafa</creatorcontrib><creatorcontrib>Hedengren, John D.</creatorcontrib><creatorcontrib>Lewis, Nicholas R.</creatorcontrib><creatorcontrib>Haseltine, Eric L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safdarnejad, Seyed Mostafa</au><au>Hedengren, John D.</au><au>Lewis, Nicholas R.</au><au>Haseltine, Eric L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initialization strategies for optimization of dynamic systems</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2015-07-12</date><risdate>2015</risdate><volume>78</volume><spage>39</spage><epage>50</epage><pages>39-50</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>•Initialization strategies for large-scale differential and algebraic equations.•Structural decomposition into multiple independent sets for successive solution.•Identification of infeasible constraints with pre-solve decomposition.•Initialization cases with mechanical, chemical, aerospace, and energy applications. For dynamic optimization applications, real-time solution reliability is improved if there is an initialized prior solution that is sufficiently close to the intended solution. This paper details several initialization strategies that are useful for obtaining an initial solution. Methods include warm start from a prior solution, linearization, structural decomposition, and an incremental unbounding of decision variables that leads up to solving the originally intended problem. Even when initialization is not required to solve a dynamic optimization problem, a staged initialization approach sometimes leads to an overall faster solution time when compared to a single optimization attempt. Several challenging optimization problems are detailed that include a high-index differential and algebraic equation pendulum model, a standard reactor model used in many benchmark tests, a tethered aerial vehicle, and smart grid energy storage. These applications are representative of a larger class of applications resulting from the simultaneous approach to optimization of dynamic systems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2015.04.016</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5535-5277</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2015-07, Vol.78, p.39-50
issn 0098-1354
1873-4375
language eng
recordid cdi_proquest_miscellaneous_1770356870
source Access via ScienceDirect (Elsevier)
subjects Algebra
Decomposition
Differential algebraic equations
Differential equations
Dynamic optimization
Dynamical systems
Dynamics
Initialization
Large-scale
Mathematical models
Optimization
Pendulums
Smart grid energy system
Strategy
title Initialization strategies for optimization of dynamic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initialization%20strategies%20for%20optimization%20of%20dynamic%20systems&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Safdarnejad,%20Seyed%20Mostafa&rft.date=2015-07-12&rft.volume=78&rft.spage=39&rft.epage=50&rft.pages=39-50&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2015.04.016&rft_dat=%3Cproquest_cross%3E1770356870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770356870&rft_id=info:pmid/&rft_els_id=S0098135415001179&rfr_iscdi=true