Formation of multiple dislocations in Si solid-phase epitaxy regrowth process using stress memorization technique

[Display omitted] •Provide formation mechanism of stress-memorization-technique induced edge-dislocation by molecular dynamic simulation.•Explain the line defect formation mechanism and defect types.•Validate simulation results and defect types by high-resolution transmission electron microscopy and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2015-06, Vol.104, p.219-224
Hauptverfasser: Shen, T.M., Wang, S.J., Tung, Y.T., Hwang, R.L., Wu, C.C., Wu, Jeff, Diaz, Carlos H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue
container_start_page 219
container_title Computational materials science
container_volume 104
creator Shen, T.M.
Wang, S.J.
Tung, Y.T.
Hwang, R.L.
Wu, C.C.
Wu, Jeff
Diaz, Carlos H.
description [Display omitted] •Provide formation mechanism of stress-memorization-technique induced edge-dislocation by molecular dynamic simulation.•Explain the line defect formation mechanism and defect types.•Validate simulation results and defect types by high-resolution transmission electron microscopy and inverse fast Fourier transform images.•Calculate the strain distribution of SMT induced dislocations. This work investigates the formation mechanism of stress memorization technique (SMT)-induced edge dislocations and stacking faults during solid-phase epitaxy regrowth (SPER) using molecular dynamics (MD) simulation. During the SPER process of a patterned amorphous Si under a high-tensile capping film, growth fronts along the (110) and (001) planes collapse to form 5- and 7-rings which trigger the Frankel partial dislocation in the {111} plane. In addition, the line defects of stacking faults along {111} plane are generated with two symmetric boundaries of atomic structures which are confirmed as micro-twin defects. The MD simulation results are validated using high-resolution transmission electron microscopy and inverse fast Fourier transform images. The strain distribution obtained from the atomic structure reveals that the stress field is mainly caused by Frankel partial dislocations and the minor stress effect from the micro-twin defects.
doi_str_mv 10.1016/j.commatsci.2015.04.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770356535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025615002438</els_id><sourcerecordid>1770356535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-5bbf073d847f7c1deb6a6a14533f5fba0eb84e9ffd67beeaa711fdcc869f53b33</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxDXjJJsFu4jhZIsRLqsQCWFuOM25dJXHqcXl9PS5FbFmNZnTPnZlLyAVnOWe8ulrnxg-DjmhcPmdc5KzMGWsOyIzXsslYzfghmbFmLjM2F9UxOUFcs0Q29XxGNnc-JNj5kXpLh20f3dQD7Rz23vzMkbqRPjuKvnddNq00AoXJRf3xSQMsg3-PKzoFbwCRbtGNS4ox7JoBBh_c1949glmNbrOFM3JkdY9w_ltPyevd7cvNQ7Z4un-8uV5kpqzLmIm2tUwWXV1KKw3voK10pXkpisIK22oGbV1CY21XyRZAa8m57Yypq8aKoi2KU3K59023pbUY1eDQQN_rEfwWFZeSFaIShUhSuZea4BEDWDUFN-jwqThTu5DVWv2FrHYhK1aqFHIir_ckpE_eHASVFDAa6FwAE1Xn3b8e38IMjuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770356535</pqid></control><display><type>article</type><title>Formation of multiple dislocations in Si solid-phase epitaxy regrowth process using stress memorization technique</title><source>Elsevier ScienceDirect Journals</source><creator>Shen, T.M. ; Wang, S.J. ; Tung, Y.T. ; Hwang, R.L. ; Wu, C.C. ; Wu, Jeff ; Diaz, Carlos H.</creator><creatorcontrib>Shen, T.M. ; Wang, S.J. ; Tung, Y.T. ; Hwang, R.L. ; Wu, C.C. ; Wu, Jeff ; Diaz, Carlos H.</creatorcontrib><description>[Display omitted] •Provide formation mechanism of stress-memorization-technique induced edge-dislocation by molecular dynamic simulation.•Explain the line defect formation mechanism and defect types.•Validate simulation results and defect types by high-resolution transmission electron microscopy and inverse fast Fourier transform images.•Calculate the strain distribution of SMT induced dislocations. This work investigates the formation mechanism of stress memorization technique (SMT)-induced edge dislocations and stacking faults during solid-phase epitaxy regrowth (SPER) using molecular dynamics (MD) simulation. During the SPER process of a patterned amorphous Si under a high-tensile capping film, growth fronts along the (110) and (001) planes collapse to form 5- and 7-rings which trigger the Frankel partial dislocation in the {111} plane. In addition, the line defects of stacking faults along {111} plane are generated with two symmetric boundaries of atomic structures which are confirmed as micro-twin defects. The MD simulation results are validated using high-resolution transmission electron microscopy and inverse fast Fourier transform images. The strain distribution obtained from the atomic structure reveals that the stress field is mainly caused by Frankel partial dislocations and the minor stress effect from the micro-twin defects.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2015.04.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Atomic structure ; Computer simulation ; Defects ; Dislocation ; Dislocations ; Epitaxy ; Molecular dynamics (MD) simulation ; Planes ; Solid-phase epitaxy regrowth ; Stacking faults ; Stress memorization technique (SMT) ; Stresses</subject><ispartof>Computational materials science, 2015-06, Vol.104, p.219-224</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-5bbf073d847f7c1deb6a6a14533f5fba0eb84e9ffd67beeaa711fdcc869f53b33</citedby><cites>FETCH-LOGICAL-c484t-5bbf073d847f7c1deb6a6a14533f5fba0eb84e9ffd67beeaa711fdcc869f53b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025615002438$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shen, T.M.</creatorcontrib><creatorcontrib>Wang, S.J.</creatorcontrib><creatorcontrib>Tung, Y.T.</creatorcontrib><creatorcontrib>Hwang, R.L.</creatorcontrib><creatorcontrib>Wu, C.C.</creatorcontrib><creatorcontrib>Wu, Jeff</creatorcontrib><creatorcontrib>Diaz, Carlos H.</creatorcontrib><title>Formation of multiple dislocations in Si solid-phase epitaxy regrowth process using stress memorization technique</title><title>Computational materials science</title><description>[Display omitted] •Provide formation mechanism of stress-memorization-technique induced edge-dislocation by molecular dynamic simulation.•Explain the line defect formation mechanism and defect types.•Validate simulation results and defect types by high-resolution transmission electron microscopy and inverse fast Fourier transform images.•Calculate the strain distribution of SMT induced dislocations. This work investigates the formation mechanism of stress memorization technique (SMT)-induced edge dislocations and stacking faults during solid-phase epitaxy regrowth (SPER) using molecular dynamics (MD) simulation. During the SPER process of a patterned amorphous Si under a high-tensile capping film, growth fronts along the (110) and (001) planes collapse to form 5- and 7-rings which trigger the Frankel partial dislocation in the {111} plane. In addition, the line defects of stacking faults along {111} plane are generated with two symmetric boundaries of atomic structures which are confirmed as micro-twin defects. The MD simulation results are validated using high-resolution transmission electron microscopy and inverse fast Fourier transform images. The strain distribution obtained from the atomic structure reveals that the stress field is mainly caused by Frankel partial dislocations and the minor stress effect from the micro-twin defects.</description><subject>Atomic structure</subject><subject>Computer simulation</subject><subject>Defects</subject><subject>Dislocation</subject><subject>Dislocations</subject><subject>Epitaxy</subject><subject>Molecular dynamics (MD) simulation</subject><subject>Planes</subject><subject>Solid-phase epitaxy regrowth</subject><subject>Stacking faults</subject><subject>Stress memorization technique (SMT)</subject><subject>Stresses</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxDXjJJsFu4jhZIsRLqsQCWFuOM25dJXHqcXl9PS5FbFmNZnTPnZlLyAVnOWe8ulrnxg-DjmhcPmdc5KzMGWsOyIzXsslYzfghmbFmLjM2F9UxOUFcs0Q29XxGNnc-JNj5kXpLh20f3dQD7Rz23vzMkbqRPjuKvnddNq00AoXJRf3xSQMsg3-PKzoFbwCRbtGNS4ox7JoBBh_c1949glmNbrOFM3JkdY9w_ltPyevd7cvNQ7Z4un-8uV5kpqzLmIm2tUwWXV1KKw3voK10pXkpisIK22oGbV1CY21XyRZAa8m57Yypq8aKoi2KU3K59023pbUY1eDQQN_rEfwWFZeSFaIShUhSuZea4BEDWDUFN-jwqThTu5DVWv2FrHYhK1aqFHIir_ckpE_eHASVFDAa6FwAE1Xn3b8e38IMjuU</recordid><startdate>20150615</startdate><enddate>20150615</enddate><creator>Shen, T.M.</creator><creator>Wang, S.J.</creator><creator>Tung, Y.T.</creator><creator>Hwang, R.L.</creator><creator>Wu, C.C.</creator><creator>Wu, Jeff</creator><creator>Diaz, Carlos H.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150615</creationdate><title>Formation of multiple dislocations in Si solid-phase epitaxy regrowth process using stress memorization technique</title><author>Shen, T.M. ; Wang, S.J. ; Tung, Y.T. ; Hwang, R.L. ; Wu, C.C. ; Wu, Jeff ; Diaz, Carlos H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-5bbf073d847f7c1deb6a6a14533f5fba0eb84e9ffd67beeaa711fdcc869f53b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic structure</topic><topic>Computer simulation</topic><topic>Defects</topic><topic>Dislocation</topic><topic>Dislocations</topic><topic>Epitaxy</topic><topic>Molecular dynamics (MD) simulation</topic><topic>Planes</topic><topic>Solid-phase epitaxy regrowth</topic><topic>Stacking faults</topic><topic>Stress memorization technique (SMT)</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, T.M.</creatorcontrib><creatorcontrib>Wang, S.J.</creatorcontrib><creatorcontrib>Tung, Y.T.</creatorcontrib><creatorcontrib>Hwang, R.L.</creatorcontrib><creatorcontrib>Wu, C.C.</creatorcontrib><creatorcontrib>Wu, Jeff</creatorcontrib><creatorcontrib>Diaz, Carlos H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, T.M.</au><au>Wang, S.J.</au><au>Tung, Y.T.</au><au>Hwang, R.L.</au><au>Wu, C.C.</au><au>Wu, Jeff</au><au>Diaz, Carlos H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of multiple dislocations in Si solid-phase epitaxy regrowth process using stress memorization technique</atitle><jtitle>Computational materials science</jtitle><date>2015-06-15</date><risdate>2015</risdate><volume>104</volume><spage>219</spage><epage>224</epage><pages>219-224</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>[Display omitted] •Provide formation mechanism of stress-memorization-technique induced edge-dislocation by molecular dynamic simulation.•Explain the line defect formation mechanism and defect types.•Validate simulation results and defect types by high-resolution transmission electron microscopy and inverse fast Fourier transform images.•Calculate the strain distribution of SMT induced dislocations. This work investigates the formation mechanism of stress memorization technique (SMT)-induced edge dislocations and stacking faults during solid-phase epitaxy regrowth (SPER) using molecular dynamics (MD) simulation. During the SPER process of a patterned amorphous Si under a high-tensile capping film, growth fronts along the (110) and (001) planes collapse to form 5- and 7-rings which trigger the Frankel partial dislocation in the {111} plane. In addition, the line defects of stacking faults along {111} plane are generated with two symmetric boundaries of atomic structures which are confirmed as micro-twin defects. The MD simulation results are validated using high-resolution transmission electron microscopy and inverse fast Fourier transform images. The strain distribution obtained from the atomic structure reveals that the stress field is mainly caused by Frankel partial dislocations and the minor stress effect from the micro-twin defects.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2015.04.009</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2015-06, Vol.104, p.219-224
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_1770356535
source Elsevier ScienceDirect Journals
subjects Atomic structure
Computer simulation
Defects
Dislocation
Dislocations
Epitaxy
Molecular dynamics (MD) simulation
Planes
Solid-phase epitaxy regrowth
Stacking faults
Stress memorization technique (SMT)
Stresses
title Formation of multiple dislocations in Si solid-phase epitaxy regrowth process using stress memorization technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T08%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20multiple%20dislocations%20in%20Si%20solid-phase%20epitaxy%20regrowth%20process%20using%20stress%20memorization%20technique&rft.jtitle=Computational%20materials%20science&rft.au=Shen,%20T.M.&rft.date=2015-06-15&rft.volume=104&rft.spage=219&rft.epage=224&rft.pages=219-224&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2015.04.009&rft_dat=%3Cproquest_cross%3E1770356535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770356535&rft_id=info:pmid/&rft_els_id=S0927025615002438&rfr_iscdi=true