Human convection flow in spaces with and without ventilation: personal exposure to floor-released particles and cough-released droplets
The effects of the human convective boundary layer (CBL), room airflow patterns, and their velocities on personal exposure are examined. Two pollutants are studied which simulate particles released from the feet and generated at distances of 2 and 3 m by a human cough. A thermal manikin whose body s...
Gespeichert in:
Veröffentlicht in: | Indoor air 2015-12, Vol.25 (6), p.672-682 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 682 |
---|---|
container_issue | 6 |
container_start_page | 672 |
container_title | Indoor air |
container_volume | 25 |
creator | Licina, D. Melikov, A. Pantelic, J. Sekhar, C. Tham, K. W. |
description | The effects of the human convective boundary layer (CBL), room airflow patterns, and their velocities on personal exposure are examined. Two pollutants are studied which simulate particles released from the feet and generated at distances of 2 and 3 m by a human cough. A thermal manikin whose body shape, size, and surface temperatures correspond to those of an average person is used to simulate the CBL. The findings of the study reveal that for accurate predictions of personal exposure, the CBL needs to be considered, as it can transport the pollution around the human body. The best way to control and reduce personal exposure when the pollution originates at the feet is to employ transverse flow from in front and from the side, relative to the exposed occupant. The flow from the above opposing the CBL create the most unfavorable velocity field that can increase personal exposure by 85%, which demonstrates a nonlinear dependence between the supplied flow rate and personal exposure. In the current ventilation design, it is commonly accepted that an increased amount of air supplied to the rooms reduces the exposure. The results of this study suggest that the understanding of air patterns should be prioritized. |
doi_str_mv | 10.1111/ina.12177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770355889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1746875926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5627-9711909010eaa89b96b4734f4a20cfa84d56fa7f447ff11bd3c459e946f9c8323</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi0EokNhwQsgS2xgkdaObzG7UsFMRTVsQCwtj3NMXTJxaied9gl4bZKmF6kSUr05ls53PsvnR-gtJQd0PIehtQe0pEo9QwsqCSmIlNVztCCaiEJqrvbQq5zPCaGKafYS7ZVCUCEpWaC_q2FrW-xiewmuD7HFvok7HFqcO-sg413oz7Bt65tLHHp8CW0fGjuxn3AHKcfWNhiuupiHBLiPkyGmIkEDNkONO5v64JrRNWlcHH6fPTTrFLsG-vwavfC2yfDmtu6jn1-__DheFafflyfHR6eFE7JUhVaU6vFblIC1ld5oueGKcc9tSZy3Fa-F9FZ5zpX3lG5q5rjQoLn02lWsZPvow-ztUrwYIPdmG7KDprEtxCGbcYmECVFV-gkol5USupRPQBlVFdNKjOj7R-h5HNK4wpkivGRyevvjTLkUc07gTZfC1qZrQ4mZMjdj5uYm85F9d2scNluo78m7kEfgcAZ2oYHr_5vMyfroTlnMEyH3cHU_YdMfIxVTwvxaL8235Xol-FqYz-wfmnHFVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731042369</pqid></control><display><type>article</type><title>Human convection flow in spaces with and without ventilation: personal exposure to floor-released particles and cough-released droplets</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Licina, D. ; Melikov, A. ; Pantelic, J. ; Sekhar, C. ; Tham, K. W.</creator><creatorcontrib>Licina, D. ; Melikov, A. ; Pantelic, J. ; Sekhar, C. ; Tham, K. W.</creatorcontrib><description>The effects of the human convective boundary layer (CBL), room airflow patterns, and their velocities on personal exposure are examined. Two pollutants are studied which simulate particles released from the feet and generated at distances of 2 and 3 m by a human cough. A thermal manikin whose body shape, size, and surface temperatures correspond to those of an average person is used to simulate the CBL. The findings of the study reveal that for accurate predictions of personal exposure, the CBL needs to be considered, as it can transport the pollution around the human body. The best way to control and reduce personal exposure when the pollution originates at the feet is to employ transverse flow from in front and from the side, relative to the exposed occupant. The flow from the above opposing the CBL create the most unfavorable velocity field that can increase personal exposure by 85%, which demonstrates a nonlinear dependence between the supplied flow rate and personal exposure. In the current ventilation design, it is commonly accepted that an increased amount of air supplied to the rooms reduces the exposure. The results of this study suggest that the understanding of air patterns should be prioritized.</description><identifier>ISSN: 0905-6947</identifier><identifier>EISSN: 1600-0668</identifier><identifier>DOI: 10.1111/ina.12177</identifier><identifier>PMID: 25515610</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Air Movements ; Air pollution ; Air Pollution, Indoor ; Convection ; Cough ; Droplets ; Exposure ; Human ; Human body ; Human convective boundary layer ; Humans ; Manikins ; Personal exposure ; Pollution ; Pollution abatement ; Respiration ; Simulation ; Thermal manikin ; Ventilation ; Ventilation flow</subject><ispartof>Indoor air, 2015-12, Vol.25 (6), p.672-682</ispartof><rights>2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd</rights><rights>2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5627-9711909010eaa89b96b4734f4a20cfa84d56fa7f447ff11bd3c459e946f9c8323</citedby><cites>FETCH-LOGICAL-c5627-9711909010eaa89b96b4734f4a20cfa84d56fa7f447ff11bd3c459e946f9c8323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fina.12177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fina.12177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25515610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Licina, D.</creatorcontrib><creatorcontrib>Melikov, A.</creatorcontrib><creatorcontrib>Pantelic, J.</creatorcontrib><creatorcontrib>Sekhar, C.</creatorcontrib><creatorcontrib>Tham, K. W.</creatorcontrib><title>Human convection flow in spaces with and without ventilation: personal exposure to floor-released particles and cough-released droplets</title><title>Indoor air</title><addtitle>Indoor Air</addtitle><description>The effects of the human convective boundary layer (CBL), room airflow patterns, and their velocities on personal exposure are examined. Two pollutants are studied which simulate particles released from the feet and generated at distances of 2 and 3 m by a human cough. A thermal manikin whose body shape, size, and surface temperatures correspond to those of an average person is used to simulate the CBL. The findings of the study reveal that for accurate predictions of personal exposure, the CBL needs to be considered, as it can transport the pollution around the human body. The best way to control and reduce personal exposure when the pollution originates at the feet is to employ transverse flow from in front and from the side, relative to the exposed occupant. The flow from the above opposing the CBL create the most unfavorable velocity field that can increase personal exposure by 85%, which demonstrates a nonlinear dependence between the supplied flow rate and personal exposure. In the current ventilation design, it is commonly accepted that an increased amount of air supplied to the rooms reduces the exposure. The results of this study suggest that the understanding of air patterns should be prioritized.</description><subject>Air Movements</subject><subject>Air pollution</subject><subject>Air Pollution, Indoor</subject><subject>Convection</subject><subject>Cough</subject><subject>Droplets</subject><subject>Exposure</subject><subject>Human</subject><subject>Human body</subject><subject>Human convective boundary layer</subject><subject>Humans</subject><subject>Manikins</subject><subject>Personal exposure</subject><subject>Pollution</subject><subject>Pollution abatement</subject><subject>Respiration</subject><subject>Simulation</subject><subject>Thermal manikin</subject><subject>Ventilation</subject><subject>Ventilation flow</subject><issn>0905-6947</issn><issn>1600-0668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhi0EokNhwQsgS2xgkdaObzG7UsFMRTVsQCwtj3NMXTJxaied9gl4bZKmF6kSUr05ls53PsvnR-gtJQd0PIehtQe0pEo9QwsqCSmIlNVztCCaiEJqrvbQq5zPCaGKafYS7ZVCUCEpWaC_q2FrW-xiewmuD7HFvok7HFqcO-sg413oz7Bt65tLHHp8CW0fGjuxn3AHKcfWNhiuupiHBLiPkyGmIkEDNkONO5v64JrRNWlcHH6fPTTrFLsG-vwavfC2yfDmtu6jn1-__DheFafflyfHR6eFE7JUhVaU6vFblIC1ld5oueGKcc9tSZy3Fa-F9FZ5zpX3lG5q5rjQoLn02lWsZPvow-ztUrwYIPdmG7KDprEtxCGbcYmECVFV-gkol5USupRPQBlVFdNKjOj7R-h5HNK4wpkivGRyevvjTLkUc07gTZfC1qZrQ4mZMjdj5uYm85F9d2scNluo78m7kEfgcAZ2oYHr_5vMyfroTlnMEyH3cHU_YdMfIxVTwvxaL8235Xol-FqYz-wfmnHFVQ</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Licina, D.</creator><creator>Melikov, A.</creator><creator>Pantelic, J.</creator><creator>Sekhar, C.</creator><creator>Tham, K. W.</creator><general>Blackwell Publishing Ltd</general><general>Hindawi Limited</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>7X8</scope><scope>7TV</scope><scope>7U7</scope><scope>7SU</scope></search><sort><creationdate>201512</creationdate><title>Human convection flow in spaces with and without ventilation: personal exposure to floor-released particles and cough-released droplets</title><author>Licina, D. ; Melikov, A. ; Pantelic, J. ; Sekhar, C. ; Tham, K. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5627-9711909010eaa89b96b4734f4a20cfa84d56fa7f447ff11bd3c459e946f9c8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air Movements</topic><topic>Air pollution</topic><topic>Air Pollution, Indoor</topic><topic>Convection</topic><topic>Cough</topic><topic>Droplets</topic><topic>Exposure</topic><topic>Human</topic><topic>Human body</topic><topic>Human convective boundary layer</topic><topic>Humans</topic><topic>Manikins</topic><topic>Personal exposure</topic><topic>Pollution</topic><topic>Pollution abatement</topic><topic>Respiration</topic><topic>Simulation</topic><topic>Thermal manikin</topic><topic>Ventilation</topic><topic>Ventilation flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Licina, D.</creatorcontrib><creatorcontrib>Melikov, A.</creatorcontrib><creatorcontrib>Pantelic, J.</creatorcontrib><creatorcontrib>Sekhar, C.</creatorcontrib><creatorcontrib>Tham, K. W.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Indoor air</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Licina, D.</au><au>Melikov, A.</au><au>Pantelic, J.</au><au>Sekhar, C.</au><au>Tham, K. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human convection flow in spaces with and without ventilation: personal exposure to floor-released particles and cough-released droplets</atitle><jtitle>Indoor air</jtitle><addtitle>Indoor Air</addtitle><date>2015-12</date><risdate>2015</risdate><volume>25</volume><issue>6</issue><spage>672</spage><epage>682</epage><pages>672-682</pages><issn>0905-6947</issn><eissn>1600-0668</eissn><abstract>The effects of the human convective boundary layer (CBL), room airflow patterns, and their velocities on personal exposure are examined. Two pollutants are studied which simulate particles released from the feet and generated at distances of 2 and 3 m by a human cough. A thermal manikin whose body shape, size, and surface temperatures correspond to those of an average person is used to simulate the CBL. The findings of the study reveal that for accurate predictions of personal exposure, the CBL needs to be considered, as it can transport the pollution around the human body. The best way to control and reduce personal exposure when the pollution originates at the feet is to employ transverse flow from in front and from the side, relative to the exposed occupant. The flow from the above opposing the CBL create the most unfavorable velocity field that can increase personal exposure by 85%, which demonstrates a nonlinear dependence between the supplied flow rate and personal exposure. In the current ventilation design, it is commonly accepted that an increased amount of air supplied to the rooms reduces the exposure. The results of this study suggest that the understanding of air patterns should be prioritized.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25515610</pmid><doi>10.1111/ina.12177</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0905-6947 |
ispartof | Indoor air, 2015-12, Vol.25 (6), p.672-682 |
issn | 0905-6947 1600-0668 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770355889 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Air Movements Air pollution Air Pollution, Indoor Convection Cough Droplets Exposure Human Human body Human convective boundary layer Humans Manikins Personal exposure Pollution Pollution abatement Respiration Simulation Thermal manikin Ventilation Ventilation flow |
title | Human convection flow in spaces with and without ventilation: personal exposure to floor-released particles and cough-released droplets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20convection%20flow%20in%20spaces%20with%20and%20without%20ventilation:%20personal%20exposure%20to%20floor-released%20particles%20and%20cough-released%20droplets&rft.jtitle=Indoor%20air&rft.au=Licina,%20D.&rft.date=2015-12&rft.volume=25&rft.issue=6&rft.spage=672&rft.epage=682&rft.pages=672-682&rft.issn=0905-6947&rft.eissn=1600-0668&rft_id=info:doi/10.1111/ina.12177&rft_dat=%3Cproquest_cross%3E1746875926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1731042369&rft_id=info:pmid/25515610&rfr_iscdi=true |