Human convection flow in spaces with and without ventilation: personal exposure to floor-released particles and cough-released droplets

The effects of the human convective boundary layer (CBL), room airflow patterns, and their velocities on personal exposure are examined. Two pollutants are studied which simulate particles released from the feet and generated at distances of 2 and 3 m by a human cough. A thermal manikin whose body s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indoor air 2015-12, Vol.25 (6), p.672-682
Hauptverfasser: Licina, D., Melikov, A., Pantelic, J., Sekhar, C., Tham, K. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 682
container_issue 6
container_start_page 672
container_title Indoor air
container_volume 25
creator Licina, D.
Melikov, A.
Pantelic, J.
Sekhar, C.
Tham, K. W.
description The effects of the human convective boundary layer (CBL), room airflow patterns, and their velocities on personal exposure are examined. Two pollutants are studied which simulate particles released from the feet and generated at distances of 2 and 3 m by a human cough. A thermal manikin whose body shape, size, and surface temperatures correspond to those of an average person is used to simulate the CBL. The findings of the study reveal that for accurate predictions of personal exposure, the CBL needs to be considered, as it can transport the pollution around the human body. The best way to control and reduce personal exposure when the pollution originates at the feet is to employ transverse flow from in front and from the side, relative to the exposed occupant. The flow from the above opposing the CBL create the most unfavorable velocity field that can increase personal exposure by 85%, which demonstrates a nonlinear dependence between the supplied flow rate and personal exposure. In the current ventilation design, it is commonly accepted that an increased amount of air supplied to the rooms reduces the exposure. The results of this study suggest that the understanding of air patterns should be prioritized.
doi_str_mv 10.1111/ina.12177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770355889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1746875926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5627-9711909010eaa89b96b4734f4a20cfa84d56fa7f447ff11bd3c459e946f9c8323</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi0EokNhwQsgS2xgkdaObzG7UsFMRTVsQCwtj3NMXTJxaied9gl4bZKmF6kSUr05ls53PsvnR-gtJQd0PIehtQe0pEo9QwsqCSmIlNVztCCaiEJqrvbQq5zPCaGKafYS7ZVCUCEpWaC_q2FrW-xiewmuD7HFvok7HFqcO-sg413oz7Bt65tLHHp8CW0fGjuxn3AHKcfWNhiuupiHBLiPkyGmIkEDNkONO5v64JrRNWlcHH6fPTTrFLsG-vwavfC2yfDmtu6jn1-__DheFafflyfHR6eFE7JUhVaU6vFblIC1ld5oueGKcc9tSZy3Fa-F9FZ5zpX3lG5q5rjQoLn02lWsZPvow-ztUrwYIPdmG7KDprEtxCGbcYmECVFV-gkol5USupRPQBlVFdNKjOj7R-h5HNK4wpkivGRyevvjTLkUc07gTZfC1qZrQ4mZMjdj5uYm85F9d2scNluo78m7kEfgcAZ2oYHr_5vMyfroTlnMEyH3cHU_YdMfIxVTwvxaL8235Xol-FqYz-wfmnHFVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731042369</pqid></control><display><type>article</type><title>Human convection flow in spaces with and without ventilation: personal exposure to floor-released particles and cough-released droplets</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Licina, D. ; Melikov, A. ; Pantelic, J. ; Sekhar, C. ; Tham, K. W.</creator><creatorcontrib>Licina, D. ; Melikov, A. ; Pantelic, J. ; Sekhar, C. ; Tham, K. W.</creatorcontrib><description>The effects of the human convective boundary layer (CBL), room airflow patterns, and their velocities on personal exposure are examined. Two pollutants are studied which simulate particles released from the feet and generated at distances of 2 and 3 m by a human cough. A thermal manikin whose body shape, size, and surface temperatures correspond to those of an average person is used to simulate the CBL. The findings of the study reveal that for accurate predictions of personal exposure, the CBL needs to be considered, as it can transport the pollution around the human body. The best way to control and reduce personal exposure when the pollution originates at the feet is to employ transverse flow from in front and from the side, relative to the exposed occupant. The flow from the above opposing the CBL create the most unfavorable velocity field that can increase personal exposure by 85%, which demonstrates a nonlinear dependence between the supplied flow rate and personal exposure. In the current ventilation design, it is commonly accepted that an increased amount of air supplied to the rooms reduces the exposure. The results of this study suggest that the understanding of air patterns should be prioritized.</description><identifier>ISSN: 0905-6947</identifier><identifier>EISSN: 1600-0668</identifier><identifier>DOI: 10.1111/ina.12177</identifier><identifier>PMID: 25515610</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Air Movements ; Air pollution ; Air Pollution, Indoor ; Convection ; Cough ; Droplets ; Exposure ; Human ; Human body ; Human convective boundary layer ; Humans ; Manikins ; Personal exposure ; Pollution ; Pollution abatement ; Respiration ; Simulation ; Thermal manikin ; Ventilation ; Ventilation flow</subject><ispartof>Indoor air, 2015-12, Vol.25 (6), p.672-682</ispartof><rights>2014 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2014 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5627-9711909010eaa89b96b4734f4a20cfa84d56fa7f447ff11bd3c459e946f9c8323</citedby><cites>FETCH-LOGICAL-c5627-9711909010eaa89b96b4734f4a20cfa84d56fa7f447ff11bd3c459e946f9c8323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fina.12177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fina.12177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25515610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Licina, D.</creatorcontrib><creatorcontrib>Melikov, A.</creatorcontrib><creatorcontrib>Pantelic, J.</creatorcontrib><creatorcontrib>Sekhar, C.</creatorcontrib><creatorcontrib>Tham, K. W.</creatorcontrib><title>Human convection flow in spaces with and without ventilation: personal exposure to floor-released particles and cough-released droplets</title><title>Indoor air</title><addtitle>Indoor Air</addtitle><description>The effects of the human convective boundary layer (CBL), room airflow patterns, and their velocities on personal exposure are examined. Two pollutants are studied which simulate particles released from the feet and generated at distances of 2 and 3 m by a human cough. A thermal manikin whose body shape, size, and surface temperatures correspond to those of an average person is used to simulate the CBL. The findings of the study reveal that for accurate predictions of personal exposure, the CBL needs to be considered, as it can transport the pollution around the human body. The best way to control and reduce personal exposure when the pollution originates at the feet is to employ transverse flow from in front and from the side, relative to the exposed occupant. The flow from the above opposing the CBL create the most unfavorable velocity field that can increase personal exposure by 85%, which demonstrates a nonlinear dependence between the supplied flow rate and personal exposure. In the current ventilation design, it is commonly accepted that an increased amount of air supplied to the rooms reduces the exposure. The results of this study suggest that the understanding of air patterns should be prioritized.</description><subject>Air Movements</subject><subject>Air pollution</subject><subject>Air Pollution, Indoor</subject><subject>Convection</subject><subject>Cough</subject><subject>Droplets</subject><subject>Exposure</subject><subject>Human</subject><subject>Human body</subject><subject>Human convective boundary layer</subject><subject>Humans</subject><subject>Manikins</subject><subject>Personal exposure</subject><subject>Pollution</subject><subject>Pollution abatement</subject><subject>Respiration</subject><subject>Simulation</subject><subject>Thermal manikin</subject><subject>Ventilation</subject><subject>Ventilation flow</subject><issn>0905-6947</issn><issn>1600-0668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhi0EokNhwQsgS2xgkdaObzG7UsFMRTVsQCwtj3NMXTJxaied9gl4bZKmF6kSUr05ls53PsvnR-gtJQd0PIehtQe0pEo9QwsqCSmIlNVztCCaiEJqrvbQq5zPCaGKafYS7ZVCUCEpWaC_q2FrW-xiewmuD7HFvok7HFqcO-sg413oz7Bt65tLHHp8CW0fGjuxn3AHKcfWNhiuupiHBLiPkyGmIkEDNkONO5v64JrRNWlcHH6fPTTrFLsG-vwavfC2yfDmtu6jn1-__DheFafflyfHR6eFE7JUhVaU6vFblIC1ld5oueGKcc9tSZy3Fa-F9FZ5zpX3lG5q5rjQoLn02lWsZPvow-ztUrwYIPdmG7KDprEtxCGbcYmECVFV-gkol5USupRPQBlVFdNKjOj7R-h5HNK4wpkivGRyevvjTLkUc07gTZfC1qZrQ4mZMjdj5uYm85F9d2scNluo78m7kEfgcAZ2oYHr_5vMyfroTlnMEyH3cHU_YdMfIxVTwvxaL8235Xol-FqYz-wfmnHFVQ</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Licina, D.</creator><creator>Melikov, A.</creator><creator>Pantelic, J.</creator><creator>Sekhar, C.</creator><creator>Tham, K. W.</creator><general>Blackwell Publishing Ltd</general><general>Hindawi Limited</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>7X8</scope><scope>7TV</scope><scope>7U7</scope><scope>7SU</scope></search><sort><creationdate>201512</creationdate><title>Human convection flow in spaces with and without ventilation: personal exposure to floor-released particles and cough-released droplets</title><author>Licina, D. ; Melikov, A. ; Pantelic, J. ; Sekhar, C. ; Tham, K. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5627-9711909010eaa89b96b4734f4a20cfa84d56fa7f447ff11bd3c459e946f9c8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air Movements</topic><topic>Air pollution</topic><topic>Air Pollution, Indoor</topic><topic>Convection</topic><topic>Cough</topic><topic>Droplets</topic><topic>Exposure</topic><topic>Human</topic><topic>Human body</topic><topic>Human convective boundary layer</topic><topic>Humans</topic><topic>Manikins</topic><topic>Personal exposure</topic><topic>Pollution</topic><topic>Pollution abatement</topic><topic>Respiration</topic><topic>Simulation</topic><topic>Thermal manikin</topic><topic>Ventilation</topic><topic>Ventilation flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Licina, D.</creatorcontrib><creatorcontrib>Melikov, A.</creatorcontrib><creatorcontrib>Pantelic, J.</creatorcontrib><creatorcontrib>Sekhar, C.</creatorcontrib><creatorcontrib>Tham, K. W.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Indoor air</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Licina, D.</au><au>Melikov, A.</au><au>Pantelic, J.</au><au>Sekhar, C.</au><au>Tham, K. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human convection flow in spaces with and without ventilation: personal exposure to floor-released particles and cough-released droplets</atitle><jtitle>Indoor air</jtitle><addtitle>Indoor Air</addtitle><date>2015-12</date><risdate>2015</risdate><volume>25</volume><issue>6</issue><spage>672</spage><epage>682</epage><pages>672-682</pages><issn>0905-6947</issn><eissn>1600-0668</eissn><abstract>The effects of the human convective boundary layer (CBL), room airflow patterns, and their velocities on personal exposure are examined. Two pollutants are studied which simulate particles released from the feet and generated at distances of 2 and 3 m by a human cough. A thermal manikin whose body shape, size, and surface temperatures correspond to those of an average person is used to simulate the CBL. The findings of the study reveal that for accurate predictions of personal exposure, the CBL needs to be considered, as it can transport the pollution around the human body. The best way to control and reduce personal exposure when the pollution originates at the feet is to employ transverse flow from in front and from the side, relative to the exposed occupant. The flow from the above opposing the CBL create the most unfavorable velocity field that can increase personal exposure by 85%, which demonstrates a nonlinear dependence between the supplied flow rate and personal exposure. In the current ventilation design, it is commonly accepted that an increased amount of air supplied to the rooms reduces the exposure. The results of this study suggest that the understanding of air patterns should be prioritized.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25515610</pmid><doi>10.1111/ina.12177</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0905-6947
ispartof Indoor air, 2015-12, Vol.25 (6), p.672-682
issn 0905-6947
1600-0668
language eng
recordid cdi_proquest_miscellaneous_1770355889
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Air Movements
Air pollution
Air Pollution, Indoor
Convection
Cough
Droplets
Exposure
Human
Human body
Human convective boundary layer
Humans
Manikins
Personal exposure
Pollution
Pollution abatement
Respiration
Simulation
Thermal manikin
Ventilation
Ventilation flow
title Human convection flow in spaces with and without ventilation: personal exposure to floor-released particles and cough-released droplets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20convection%20flow%20in%20spaces%20with%20and%20without%20ventilation:%20personal%20exposure%20to%20floor-released%20particles%20and%20cough-released%20droplets&rft.jtitle=Indoor%20air&rft.au=Licina,%20D.&rft.date=2015-12&rft.volume=25&rft.issue=6&rft.spage=672&rft.epage=682&rft.pages=672-682&rft.issn=0905-6947&rft.eissn=1600-0668&rft_id=info:doi/10.1111/ina.12177&rft_dat=%3Cproquest_cross%3E1746875926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1731042369&rft_id=info:pmid/25515610&rfr_iscdi=true