Distributed generation network design considering ground capacitive couplings

Distributed Generation (DG) systems using power-electronics-based grid interfaces magnify the problem of ground capacitive couplings in modern distribution networks. The application of simplified models to DG installations neglects the current distortion, potential rise, and losses in the system as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2012-09, Vol.45, p.119-127
Hauptverfasser: El Halabi, N., García-Gracia, M., Comech, M.P., Oyarbide, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue
container_start_page 119
container_title Renewable energy
container_volume 45
creator El Halabi, N.
García-Gracia, M.
Comech, M.P.
Oyarbide, E.
description Distributed Generation (DG) systems using power-electronics-based grid interfaces magnify the problem of ground capacitive couplings in modern distribution networks. The application of simplified models to DG installations neglects the current distortion, potential rise, and losses in the system as consequence of the capacitive coupling within the installation. These capacitive couplings represent a leakage impedance loop for the capacitive currents imposed by the high-frequency switching of power converters. This paper proposes a suitable method to reproduce this DG harmonic current injection into the distribution network. The capacitive coupling proposed for DG installation with ground is modeled as a parallel resistance and capacitor arrangement, and leads to an accurate approximation to the real operation response of the DG networks. Simulation results are presented together with solutions based on the proposed model to minimize the capacitive ground current in DG networks. Objectives include for meeting typical power quality regulations concerning harmonic distortion, improving safety, and optimizing the efficiency of the installation. ► High penetration of DG magnifies ground capacitive couplings. ► Capacitive couplings become significant due to high frequency currents. ► Proposed model allows reproducing effect of this phenomenon in DG networks. ► Capacitive coupling models of PV and wind installations are deduced. ► Simulations are based on DG network with PV and wind installations, and loads.
doi_str_mv 10.1016/j.renene.2012.02.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770355561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148112001632</els_id><sourcerecordid>1014110201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2b6747b0262da8ff556b2074d988b5d2abe7342fa24153ca085d9aab00064ca03</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-Aw-9CF66TrJJm14EWT9hxYueQ5pMl6zddE1axX9vyi4elRkYhnnmneEl5JzCjAItrtazgD7FjAFlMxiTH5AJlWWVQyHZIZlAVUBOuaTH5CTGNQAVsuQT8nzrYh9cPfRos1XSCLp3nc889l9deM8sRrfymel8dBaD86tsFbrB28zorTaud5-YpsO2TaN4So4a3UY829cpebu_e1085suXh6fFzTI3HFifs7ooeVkDK5jVsmmEKGoGJbeVlLWwTNdYzjlrNONUzI0GKWyldQ0ABU_tfEoud7rb0H0MGHu1cdFg22qP3RAVLUuYiyRL_0eBckohOZdQvkNN6GIM2KhtcBsdvhM0coVaq53RajRawZg8rV3sL-hodNsE7Y2Lv7tMSCoqOT59veMwOfPpMKhoHHqD1gU0vbKd-_vQD4frlcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1014110201</pqid></control><display><type>article</type><title>Distributed generation network design considering ground capacitive couplings</title><source>Elsevier ScienceDirect Journals</source><creator>El Halabi, N. ; García-Gracia, M. ; Comech, M.P. ; Oyarbide, E.</creator><creatorcontrib>El Halabi, N. ; García-Gracia, M. ; Comech, M.P. ; Oyarbide, E.</creatorcontrib><description>Distributed Generation (DG) systems using power-electronics-based grid interfaces magnify the problem of ground capacitive couplings in modern distribution networks. The application of simplified models to DG installations neglects the current distortion, potential rise, and losses in the system as consequence of the capacitive coupling within the installation. These capacitive couplings represent a leakage impedance loop for the capacitive currents imposed by the high-frequency switching of power converters. This paper proposes a suitable method to reproduce this DG harmonic current injection into the distribution network. The capacitive coupling proposed for DG installation with ground is modeled as a parallel resistance and capacitor arrangement, and leads to an accurate approximation to the real operation response of the DG networks. Simulation results are presented together with solutions based on the proposed model to minimize the capacitive ground current in DG networks. Objectives include for meeting typical power quality regulations concerning harmonic distortion, improving safety, and optimizing the efficiency of the installation. ► High penetration of DG magnifies ground capacitive couplings. ► Capacitive couplings become significant due to high frequency currents. ► Proposed model allows reproducing effect of this phenomenon in DG networks. ► Capacitive coupling models of PV and wind installations are deduced. ► Simulations are based on DG network with PV and wind installations, and loads.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2012.02.024</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Capacitive couplings ; Computer simulation ; Couplings ; Distributed generation networks ; Energy ; Equipments, installations and applications ; Exact sciences and technology ; Grounds ; Harmonics ; Joining ; Natural energy ; Networks ; Photovoltaic conversion ; PV installation modeling ; Renewable energy ; Solar energy ; Switching theory ; Wind energy ; Wind farms modeling</subject><ispartof>Renewable energy, 2012-09, Vol.45, p.119-127</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2b6747b0262da8ff556b2074d988b5d2abe7342fa24153ca085d9aab00064ca03</citedby><cites>FETCH-LOGICAL-c402t-2b6747b0262da8ff556b2074d988b5d2abe7342fa24153ca085d9aab00064ca03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960148112001632$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25815980$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>El Halabi, N.</creatorcontrib><creatorcontrib>García-Gracia, M.</creatorcontrib><creatorcontrib>Comech, M.P.</creatorcontrib><creatorcontrib>Oyarbide, E.</creatorcontrib><title>Distributed generation network design considering ground capacitive couplings</title><title>Renewable energy</title><description>Distributed Generation (DG) systems using power-electronics-based grid interfaces magnify the problem of ground capacitive couplings in modern distribution networks. The application of simplified models to DG installations neglects the current distortion, potential rise, and losses in the system as consequence of the capacitive coupling within the installation. These capacitive couplings represent a leakage impedance loop for the capacitive currents imposed by the high-frequency switching of power converters. This paper proposes a suitable method to reproduce this DG harmonic current injection into the distribution network. The capacitive coupling proposed for DG installation with ground is modeled as a parallel resistance and capacitor arrangement, and leads to an accurate approximation to the real operation response of the DG networks. Simulation results are presented together with solutions based on the proposed model to minimize the capacitive ground current in DG networks. Objectives include for meeting typical power quality regulations concerning harmonic distortion, improving safety, and optimizing the efficiency of the installation. ► High penetration of DG magnifies ground capacitive couplings. ► Capacitive couplings become significant due to high frequency currents. ► Proposed model allows reproducing effect of this phenomenon in DG networks. ► Capacitive coupling models of PV and wind installations are deduced. ► Simulations are based on DG network with PV and wind installations, and loads.</description><subject>Applied sciences</subject><subject>Capacitive couplings</subject><subject>Computer simulation</subject><subject>Couplings</subject><subject>Distributed generation networks</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Grounds</subject><subject>Harmonics</subject><subject>Joining</subject><subject>Natural energy</subject><subject>Networks</subject><subject>Photovoltaic conversion</subject><subject>PV installation modeling</subject><subject>Renewable energy</subject><subject>Solar energy</subject><subject>Switching theory</subject><subject>Wind energy</subject><subject>Wind farms modeling</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-Aw-9CF66TrJJm14EWT9hxYueQ5pMl6zddE1axX9vyi4elRkYhnnmneEl5JzCjAItrtazgD7FjAFlMxiTH5AJlWWVQyHZIZlAVUBOuaTH5CTGNQAVsuQT8nzrYh9cPfRos1XSCLp3nc889l9deM8sRrfymel8dBaD86tsFbrB28zorTaud5-YpsO2TaN4So4a3UY829cpebu_e1085suXh6fFzTI3HFifs7ooeVkDK5jVsmmEKGoGJbeVlLWwTNdYzjlrNONUzI0GKWyldQ0ABU_tfEoud7rb0H0MGHu1cdFg22qP3RAVLUuYiyRL_0eBckohOZdQvkNN6GIM2KhtcBsdvhM0coVaq53RajRawZg8rV3sL-hodNsE7Y2Lv7tMSCoqOT59veMwOfPpMKhoHHqD1gU0vbKd-_vQD4frlcw</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>El Halabi, N.</creator><creator>García-Gracia, M.</creator><creator>Comech, M.P.</creator><creator>Oyarbide, E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20120901</creationdate><title>Distributed generation network design considering ground capacitive couplings</title><author>El Halabi, N. ; García-Gracia, M. ; Comech, M.P. ; Oyarbide, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2b6747b0262da8ff556b2074d988b5d2abe7342fa24153ca085d9aab00064ca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Capacitive couplings</topic><topic>Computer simulation</topic><topic>Couplings</topic><topic>Distributed generation networks</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Grounds</topic><topic>Harmonics</topic><topic>Joining</topic><topic>Natural energy</topic><topic>Networks</topic><topic>Photovoltaic conversion</topic><topic>PV installation modeling</topic><topic>Renewable energy</topic><topic>Solar energy</topic><topic>Switching theory</topic><topic>Wind energy</topic><topic>Wind farms modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Halabi, N.</creatorcontrib><creatorcontrib>García-Gracia, M.</creatorcontrib><creatorcontrib>Comech, M.P.</creatorcontrib><creatorcontrib>Oyarbide, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Halabi, N.</au><au>García-Gracia, M.</au><au>Comech, M.P.</au><au>Oyarbide, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed generation network design considering ground capacitive couplings</atitle><jtitle>Renewable energy</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>45</volume><spage>119</spage><epage>127</epage><pages>119-127</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Distributed Generation (DG) systems using power-electronics-based grid interfaces magnify the problem of ground capacitive couplings in modern distribution networks. The application of simplified models to DG installations neglects the current distortion, potential rise, and losses in the system as consequence of the capacitive coupling within the installation. These capacitive couplings represent a leakage impedance loop for the capacitive currents imposed by the high-frequency switching of power converters. This paper proposes a suitable method to reproduce this DG harmonic current injection into the distribution network. The capacitive coupling proposed for DG installation with ground is modeled as a parallel resistance and capacitor arrangement, and leads to an accurate approximation to the real operation response of the DG networks. Simulation results are presented together with solutions based on the proposed model to minimize the capacitive ground current in DG networks. Objectives include for meeting typical power quality regulations concerning harmonic distortion, improving safety, and optimizing the efficiency of the installation. ► High penetration of DG magnifies ground capacitive couplings. ► Capacitive couplings become significant due to high frequency currents. ► Proposed model allows reproducing effect of this phenomenon in DG networks. ► Capacitive coupling models of PV and wind installations are deduced. ► Simulations are based on DG network with PV and wind installations, and loads.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2012.02.024</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2012-09, Vol.45, p.119-127
issn 0960-1481
1879-0682
language eng
recordid cdi_proquest_miscellaneous_1770355561
source Elsevier ScienceDirect Journals
subjects Applied sciences
Capacitive couplings
Computer simulation
Couplings
Distributed generation networks
Energy
Equipments, installations and applications
Exact sciences and technology
Grounds
Harmonics
Joining
Natural energy
Networks
Photovoltaic conversion
PV installation modeling
Renewable energy
Solar energy
Switching theory
Wind energy
Wind farms modeling
title Distributed generation network design considering ground capacitive couplings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20generation%20network%20design%20considering%20ground%20capacitive%20couplings&rft.jtitle=Renewable%20energy&rft.au=El%20Halabi,%20N.&rft.date=2012-09-01&rft.volume=45&rft.spage=119&rft.epage=127&rft.pages=119-127&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2012.02.024&rft_dat=%3Cproquest_cross%3E1014110201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1014110201&rft_id=info:pmid/&rft_els_id=S0960148112001632&rfr_iscdi=true