Multichromatic Analysis of InSAR Data
The multichromatic analysis (MCA) uses interferometric pairs of SAR images processed at range subbands and explores the phase trend of each pixel as a function of the different central carrier frequencies to infer absolute optical path difference. This approach allows retrieving unambiguous height i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2013-09, Vol.51 (9), p.4790-4799 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4799 |
---|---|
container_issue | 9 |
container_start_page | 4790 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 51 |
creator | Bovenga, Fabio Giacovazzo, Vito Martino Refice, Alberto Veneziani, Nicola |
description | The multichromatic analysis (MCA) uses interferometric pairs of SAR images processed at range subbands and explores the phase trend of each pixel as a function of the different central carrier frequencies to infer absolute optical path difference. This approach allows retrieving unambiguous height information on selected pixels, potentially solving the problem of spatial phase unwrapping, which is instead critical in the standard monochromatic processing. The method, based on concepts originally introduced by Madsen and Zebker, has been developed in previous work both theoretically and through simulations. This paper presents the first MCA experimental validation of the procedure, through application to a wideband SAR single-pass interferometric data set acquired by the AES-1 airborne sensor. An evaluation of the impact of the MCA processing parameters on the height estimation performances is obtained through a parametric analysis. The results confirm the indications derived by the theoretical analysis, demonstrating the feasibility of the MCA absolute phase measurement, provided that a sufficient bandwidth is available. |
doi_str_mv | 10.1109/TGRS.2012.2230633 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770352554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6428642</ieee_id><sourcerecordid>1770352554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-5177e7fc3555dffbacdc77a5a83bb9fb6208c04482b69b7fa7eacc9bb0fa2b793</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QLwsSMHL1nxsNtljqVoLFaGt5zBJE9yy3a3J7qH_3iwtPXjxMMxhnnmHeRC6J3hMCC6e17PlakwxoWNKGc4Zu0ADwrlMcZ5ll2iASZGnVBb0Gt2EsMWYZJyIARp9dFVbmm_f7CD2ZFJDdQhlSBqXzOvVZJm8QAu36MpBFezdqQ_R19vrevqeLj5n8-lkkRomizaNicIKZxjnfOOcBrMxQgAHybQunM4plgZnmaQ6L7RwICwYU2iNHVAtCjZET8fcvW9-OhtatSuDsVUFtW26oGI-Zpxynv2PxjOCMCZ4RB__oNum8_HRnmKYRyskjxQ5UsY3IXjr1N6XO_AHRbDqHaveseodq5PjuDM6JUMwUDkPtSnDeZEKwbiQOHIPR6601p7HeUZlLPYLKn6CcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1430589216</pqid></control><display><type>article</type><title>Multichromatic Analysis of InSAR Data</title><source>IEEE Electronic Library (IEL)</source><creator>Bovenga, Fabio ; Giacovazzo, Vito Martino ; Refice, Alberto ; Veneziani, Nicola</creator><creatorcontrib>Bovenga, Fabio ; Giacovazzo, Vito Martino ; Refice, Alberto ; Veneziani, Nicola</creatorcontrib><description>The multichromatic analysis (MCA) uses interferometric pairs of SAR images processed at range subbands and explores the phase trend of each pixel as a function of the different central carrier frequencies to infer absolute optical path difference. This approach allows retrieving unambiguous height information on selected pixels, potentially solving the problem of spatial phase unwrapping, which is instead critical in the standard monochromatic processing. The method, based on concepts originally introduced by Madsen and Zebker, has been developed in previous work both theoretically and through simulations. This paper presents the first MCA experimental validation of the procedure, through application to a wideband SAR single-pass interferometric data set acquired by the AES-1 airborne sensor. An evaluation of the impact of the MCA processing parameters on the height estimation performances is obtained through a parametric analysis. The results confirm the indications derived by the theoretical analysis, demonstrating the feasibility of the MCA absolute phase measurement, provided that a sufficient bandwidth is available.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2012.2230633</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Airborne sensing ; Applied geophysics ; Bandwidth ; Carrier frequencies ; Distance measurement ; Earth sciences ; Earth, ocean, space ; Estimation ; Exact sciences and technology ; Indication ; Interferometry ; Internal geophysics ; Noise ; Parametric analysis ; Pixels ; Process parameters ; Studies ; Synthetic aperture radar ; synthetic aperture radar interferometry (InSAR) ; Thyristors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2013-09, Vol.51 (9), p.4790-4799</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-5177e7fc3555dffbacdc77a5a83bb9fb6208c04482b69b7fa7eacc9bb0fa2b793</citedby><cites>FETCH-LOGICAL-c389t-5177e7fc3555dffbacdc77a5a83bb9fb6208c04482b69b7fa7eacc9bb0fa2b793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6428642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6428642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27735780$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bovenga, Fabio</creatorcontrib><creatorcontrib>Giacovazzo, Vito Martino</creatorcontrib><creatorcontrib>Refice, Alberto</creatorcontrib><creatorcontrib>Veneziani, Nicola</creatorcontrib><title>Multichromatic Analysis of InSAR Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The multichromatic analysis (MCA) uses interferometric pairs of SAR images processed at range subbands and explores the phase trend of each pixel as a function of the different central carrier frequencies to infer absolute optical path difference. This approach allows retrieving unambiguous height information on selected pixels, potentially solving the problem of spatial phase unwrapping, which is instead critical in the standard monochromatic processing. The method, based on concepts originally introduced by Madsen and Zebker, has been developed in previous work both theoretically and through simulations. This paper presents the first MCA experimental validation of the procedure, through application to a wideband SAR single-pass interferometric data set acquired by the AES-1 airborne sensor. An evaluation of the impact of the MCA processing parameters on the height estimation performances is obtained through a parametric analysis. The results confirm the indications derived by the theoretical analysis, demonstrating the feasibility of the MCA absolute phase measurement, provided that a sufficient bandwidth is available.</description><subject>Accuracy</subject><subject>Airborne sensing</subject><subject>Applied geophysics</subject><subject>Bandwidth</subject><subject>Carrier frequencies</subject><subject>Distance measurement</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Indication</subject><subject>Interferometry</subject><subject>Internal geophysics</subject><subject>Noise</subject><subject>Parametric analysis</subject><subject>Pixels</subject><subject>Process parameters</subject><subject>Studies</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar interferometry (InSAR)</subject><subject>Thyristors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkE1LAzEQhoMoWKs_QLwsSMHL1nxsNtljqVoLFaGt5zBJE9yy3a3J7qH_3iwtPXjxMMxhnnmHeRC6J3hMCC6e17PlakwxoWNKGc4Zu0ADwrlMcZ5ll2iASZGnVBb0Gt2EsMWYZJyIARp9dFVbmm_f7CD2ZFJDdQhlSBqXzOvVZJm8QAu36MpBFezdqQ_R19vrevqeLj5n8-lkkRomizaNicIKZxjnfOOcBrMxQgAHybQunM4plgZnmaQ6L7RwICwYU2iNHVAtCjZET8fcvW9-OhtatSuDsVUFtW26oGI-Zpxynv2PxjOCMCZ4RB__oNum8_HRnmKYRyskjxQ5UsY3IXjr1N6XO_AHRbDqHaveseodq5PjuDM6JUMwUDkPtSnDeZEKwbiQOHIPR6601p7HeUZlLPYLKn6CcQ</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Bovenga, Fabio</creator><creator>Giacovazzo, Vito Martino</creator><creator>Refice, Alberto</creator><creator>Veneziani, Nicola</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20130901</creationdate><title>Multichromatic Analysis of InSAR Data</title><author>Bovenga, Fabio ; Giacovazzo, Vito Martino ; Refice, Alberto ; Veneziani, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-5177e7fc3555dffbacdc77a5a83bb9fb6208c04482b69b7fa7eacc9bb0fa2b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Airborne sensing</topic><topic>Applied geophysics</topic><topic>Bandwidth</topic><topic>Carrier frequencies</topic><topic>Distance measurement</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Indication</topic><topic>Interferometry</topic><topic>Internal geophysics</topic><topic>Noise</topic><topic>Parametric analysis</topic><topic>Pixels</topic><topic>Process parameters</topic><topic>Studies</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar interferometry (InSAR)</topic><topic>Thyristors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bovenga, Fabio</creatorcontrib><creatorcontrib>Giacovazzo, Vito Martino</creatorcontrib><creatorcontrib>Refice, Alberto</creatorcontrib><creatorcontrib>Veneziani, Nicola</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bovenga, Fabio</au><au>Giacovazzo, Vito Martino</au><au>Refice, Alberto</au><au>Veneziani, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multichromatic Analysis of InSAR Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>51</volume><issue>9</issue><spage>4790</spage><epage>4799</epage><pages>4790-4799</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The multichromatic analysis (MCA) uses interferometric pairs of SAR images processed at range subbands and explores the phase trend of each pixel as a function of the different central carrier frequencies to infer absolute optical path difference. This approach allows retrieving unambiguous height information on selected pixels, potentially solving the problem of spatial phase unwrapping, which is instead critical in the standard monochromatic processing. The method, based on concepts originally introduced by Madsen and Zebker, has been developed in previous work both theoretically and through simulations. This paper presents the first MCA experimental validation of the procedure, through application to a wideband SAR single-pass interferometric data set acquired by the AES-1 airborne sensor. An evaluation of the impact of the MCA processing parameters on the height estimation performances is obtained through a parametric analysis. The results confirm the indications derived by the theoretical analysis, demonstrating the feasibility of the MCA absolute phase measurement, provided that a sufficient bandwidth is available.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2012.2230633</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2013-09, Vol.51 (9), p.4790-4799 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770352554 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Airborne sensing Applied geophysics Bandwidth Carrier frequencies Distance measurement Earth sciences Earth, ocean, space Estimation Exact sciences and technology Indication Interferometry Internal geophysics Noise Parametric analysis Pixels Process parameters Studies Synthetic aperture radar synthetic aperture radar interferometry (InSAR) Thyristors |
title | Multichromatic Analysis of InSAR Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multichromatic%20Analysis%20of%20InSAR%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Bovenga,%20Fabio&rft.date=2013-09-01&rft.volume=51&rft.issue=9&rft.spage=4790&rft.epage=4799&rft.pages=4790-4799&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2012.2230633&rft_dat=%3Cproquest_RIE%3E1770352554%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1430589216&rft_id=info:pmid/&rft_ieee_id=6428642&rfr_iscdi=true |