Multilevel SIFT Matching for Large-Size VHR Image Registration

A fast approach is proposed in this letter for large-size very high resolution image registration, which is accomplished based on coarse-to-fine strategy and blockwise scale-invariant feature transform (SIFT) matching. Coarse registration is implemented at low resolution level, which provides a geom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2012-03, Vol.9 (2), p.171-175
Hauptverfasser: Huo, Chunlei, Pan, Chunhong, Huo, Leigang, Zhou, Zhixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 2
container_start_page 171
container_title IEEE geoscience and remote sensing letters
container_volume 9
creator Huo, Chunlei
Pan, Chunhong
Huo, Leigang
Zhou, Zhixin
description A fast approach is proposed in this letter for large-size very high resolution image registration, which is accomplished based on coarse-to-fine strategy and blockwise scale-invariant feature transform (SIFT) matching. Coarse registration is implemented at low resolution level, which provides a geometric constraint. The constraint makes the blockwise SIFT matching possible and is helpful for getting more matched keypoints at the latter refined procedure. Refined registration is achieved by blockwise SIFT matching and global optimization on the whole matched keypoints based on iterative reweighted least squares. To improve the efficiency, blockwise SIFT matching is implemented in a parallel manner. Experiments demonstrate the effectiveness of the proposed approach.
doi_str_mv 10.1109/LGRS.2011.2163491
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770352478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6012513</ieee_id><sourcerecordid>1019633914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-dba4a24e77639afcdc55b46cc2fbc3be64958ecc88572787f58b130067ab12413</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhYMoWKs_QNwEV25S584jM9kIUuwDUoS2irswmd7ElDSpM4mgv96EFhduXN2z-M6B-3neNZARAInu4-lyNaIEYEQhZDyCE28AQqiACAmnfeYiEJF6O_cunNsSQrlScuA9LNqyKUr8xNJfzSdrf6Eb815UuZ_V1o-1zTFYFd_ov86W_nync_SXmBeusbop6urSO8t06fDqeIfey-RpPZ4F8fN0Pn6MA8OEaoJNqrmmHKUMWaQzszFCpDw0hmapYSmGPBIKjVFKSCqVzIRKgRESSp0C5cCG3t1hd2_rjxZdk-wKZ7AsdYV16xKQkjBBuVT_owSikLEIeIfe_kG3dWur7pEkooSCJKrfgwNkbO2cxSzZ22Kn7Ve3lPTuk9590rtPju67zs2hUyDiLx8SoAIY-wELK31J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920217088</pqid></control><display><type>article</type><title>Multilevel SIFT Matching for Large-Size VHR Image Registration</title><source>IEEE Electronic Library (IEL)</source><creator>Huo, Chunlei ; Pan, Chunhong ; Huo, Leigang ; Zhou, Zhixin</creator><creatorcontrib>Huo, Chunlei ; Pan, Chunhong ; Huo, Leigang ; Zhou, Zhixin</creatorcontrib><description>A fast approach is proposed in this letter for large-size very high resolution image registration, which is accomplished based on coarse-to-fine strategy and blockwise scale-invariant feature transform (SIFT) matching. Coarse registration is implemented at low resolution level, which provides a geometric constraint. The constraint makes the blockwise SIFT matching possible and is helpful for getting more matched keypoints at the latter refined procedure. Refined registration is achieved by blockwise SIFT matching and global optimization on the whole matched keypoints based on iterative reweighted least squares. To improve the efficiency, blockwise SIFT matching is implemented in a parallel manner. Experiments demonstrate the effectiveness of the proposed approach.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2011.2163491</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Blocking ; Coarse-to-fine strategy ; Feature extraction ; geometric constraint ; Geometric constraints ; Image registration ; large-size image registration ; Least squares method ; Matching ; Multilevel ; Optimization ; parallel-based architecture ; Remote sensing ; Satellites ; Spatial resolution ; Strategy</subject><ispartof>IEEE geoscience and remote sensing letters, 2012-03, Vol.9 (2), p.171-175</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-dba4a24e77639afcdc55b46cc2fbc3be64958ecc88572787f58b130067ab12413</citedby><cites>FETCH-LOGICAL-c358t-dba4a24e77639afcdc55b46cc2fbc3be64958ecc88572787f58b130067ab12413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6012513$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6012513$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huo, Chunlei</creatorcontrib><creatorcontrib>Pan, Chunhong</creatorcontrib><creatorcontrib>Huo, Leigang</creatorcontrib><creatorcontrib>Zhou, Zhixin</creatorcontrib><title>Multilevel SIFT Matching for Large-Size VHR Image Registration</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>A fast approach is proposed in this letter for large-size very high resolution image registration, which is accomplished based on coarse-to-fine strategy and blockwise scale-invariant feature transform (SIFT) matching. Coarse registration is implemented at low resolution level, which provides a geometric constraint. The constraint makes the blockwise SIFT matching possible and is helpful for getting more matched keypoints at the latter refined procedure. Refined registration is achieved by blockwise SIFT matching and global optimization on the whole matched keypoints based on iterative reweighted least squares. To improve the efficiency, blockwise SIFT matching is implemented in a parallel manner. Experiments demonstrate the effectiveness of the proposed approach.</description><subject>Accuracy</subject><subject>Blocking</subject><subject>Coarse-to-fine strategy</subject><subject>Feature extraction</subject><subject>geometric constraint</subject><subject>Geometric constraints</subject><subject>Image registration</subject><subject>large-size image registration</subject><subject>Least squares method</subject><subject>Matching</subject><subject>Multilevel</subject><subject>Optimization</subject><subject>parallel-based architecture</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Spatial resolution</subject><subject>Strategy</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkEtLw0AUhYMoWKs_QNwEV25S584jM9kIUuwDUoS2irswmd7ElDSpM4mgv96EFhduXN2z-M6B-3neNZARAInu4-lyNaIEYEQhZDyCE28AQqiACAmnfeYiEJF6O_cunNsSQrlScuA9LNqyKUr8xNJfzSdrf6Eb815UuZ_V1o-1zTFYFd_ov86W_nync_SXmBeusbop6urSO8t06fDqeIfey-RpPZ4F8fN0Pn6MA8OEaoJNqrmmHKUMWaQzszFCpDw0hmapYSmGPBIKjVFKSCqVzIRKgRESSp0C5cCG3t1hd2_rjxZdk-wKZ7AsdYV16xKQkjBBuVT_owSikLEIeIfe_kG3dWur7pEkooSCJKrfgwNkbO2cxSzZ22Kn7Ve3lPTuk9590rtPju67zs2hUyDiLx8SoAIY-wELK31J</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Huo, Chunlei</creator><creator>Pan, Chunhong</creator><creator>Huo, Leigang</creator><creator>Zhou, Zhixin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20120301</creationdate><title>Multilevel SIFT Matching for Large-Size VHR Image Registration</title><author>Huo, Chunlei ; Pan, Chunhong ; Huo, Leigang ; Zhou, Zhixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-dba4a24e77639afcdc55b46cc2fbc3be64958ecc88572787f58b130067ab12413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Blocking</topic><topic>Coarse-to-fine strategy</topic><topic>Feature extraction</topic><topic>geometric constraint</topic><topic>Geometric constraints</topic><topic>Image registration</topic><topic>large-size image registration</topic><topic>Least squares method</topic><topic>Matching</topic><topic>Multilevel</topic><topic>Optimization</topic><topic>parallel-based architecture</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Spatial resolution</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Chunlei</creatorcontrib><creatorcontrib>Pan, Chunhong</creatorcontrib><creatorcontrib>Huo, Leigang</creatorcontrib><creatorcontrib>Zhou, Zhixin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huo, Chunlei</au><au>Pan, Chunhong</au><au>Huo, Leigang</au><au>Zhou, Zhixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilevel SIFT Matching for Large-Size VHR Image Registration</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>9</volume><issue>2</issue><spage>171</spage><epage>175</epage><pages>171-175</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>A fast approach is proposed in this letter for large-size very high resolution image registration, which is accomplished based on coarse-to-fine strategy and blockwise scale-invariant feature transform (SIFT) matching. Coarse registration is implemented at low resolution level, which provides a geometric constraint. The constraint makes the blockwise SIFT matching possible and is helpful for getting more matched keypoints at the latter refined procedure. Refined registration is achieved by blockwise SIFT matching and global optimization on the whole matched keypoints based on iterative reweighted least squares. To improve the efficiency, blockwise SIFT matching is implemented in a parallel manner. Experiments demonstrate the effectiveness of the proposed approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2011.2163491</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2012-03, Vol.9 (2), p.171-175
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_miscellaneous_1770352478
source IEEE Electronic Library (IEL)
subjects Accuracy
Blocking
Coarse-to-fine strategy
Feature extraction
geometric constraint
Geometric constraints
Image registration
large-size image registration
Least squares method
Matching
Multilevel
Optimization
parallel-based architecture
Remote sensing
Satellites
Spatial resolution
Strategy
title Multilevel SIFT Matching for Large-Size VHR Image Registration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilevel%20SIFT%20Matching%20for%20Large-Size%20VHR%20Image%20Registration&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Huo,%20Chunlei&rft.date=2012-03-01&rft.volume=9&rft.issue=2&rft.spage=171&rft.epage=175&rft.pages=171-175&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2011.2163491&rft_dat=%3Cproquest_RIE%3E1019633914%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920217088&rft_id=info:pmid/&rft_ieee_id=6012513&rfr_iscdi=true