Multilevel SIFT Matching for Large-Size VHR Image Registration
A fast approach is proposed in this letter for large-size very high resolution image registration, which is accomplished based on coarse-to-fine strategy and blockwise scale-invariant feature transform (SIFT) matching. Coarse registration is implemented at low resolution level, which provides a geom...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2012-03, Vol.9 (2), p.171-175 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | 2 |
container_start_page | 171 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 9 |
creator | Huo, Chunlei Pan, Chunhong Huo, Leigang Zhou, Zhixin |
description | A fast approach is proposed in this letter for large-size very high resolution image registration, which is accomplished based on coarse-to-fine strategy and blockwise scale-invariant feature transform (SIFT) matching. Coarse registration is implemented at low resolution level, which provides a geometric constraint. The constraint makes the blockwise SIFT matching possible and is helpful for getting more matched keypoints at the latter refined procedure. Refined registration is achieved by blockwise SIFT matching and global optimization on the whole matched keypoints based on iterative reweighted least squares. To improve the efficiency, blockwise SIFT matching is implemented in a parallel manner. Experiments demonstrate the effectiveness of the proposed approach. |
doi_str_mv | 10.1109/LGRS.2011.2163491 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770352478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6012513</ieee_id><sourcerecordid>1019633914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-dba4a24e77639afcdc55b46cc2fbc3be64958ecc88572787f58b130067ab12413</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhYMoWKs_QNwEV25S584jM9kIUuwDUoS2irswmd7ElDSpM4mgv96EFhduXN2z-M6B-3neNZARAInu4-lyNaIEYEQhZDyCE28AQqiACAmnfeYiEJF6O_cunNsSQrlScuA9LNqyKUr8xNJfzSdrf6Eb815UuZ_V1o-1zTFYFd_ov86W_nync_SXmBeusbop6urSO8t06fDqeIfey-RpPZ4F8fN0Pn6MA8OEaoJNqrmmHKUMWaQzszFCpDw0hmapYSmGPBIKjVFKSCqVzIRKgRESSp0C5cCG3t1hd2_rjxZdk-wKZ7AsdYV16xKQkjBBuVT_owSikLEIeIfe_kG3dWur7pEkooSCJKrfgwNkbO2cxSzZ22Kn7Ve3lPTuk9590rtPju67zs2hUyDiLx8SoAIY-wELK31J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920217088</pqid></control><display><type>article</type><title>Multilevel SIFT Matching for Large-Size VHR Image Registration</title><source>IEEE Electronic Library (IEL)</source><creator>Huo, Chunlei ; Pan, Chunhong ; Huo, Leigang ; Zhou, Zhixin</creator><creatorcontrib>Huo, Chunlei ; Pan, Chunhong ; Huo, Leigang ; Zhou, Zhixin</creatorcontrib><description>A fast approach is proposed in this letter for large-size very high resolution image registration, which is accomplished based on coarse-to-fine strategy and blockwise scale-invariant feature transform (SIFT) matching. Coarse registration is implemented at low resolution level, which provides a geometric constraint. The constraint makes the blockwise SIFT matching possible and is helpful for getting more matched keypoints at the latter refined procedure. Refined registration is achieved by blockwise SIFT matching and global optimization on the whole matched keypoints based on iterative reweighted least squares. To improve the efficiency, blockwise SIFT matching is implemented in a parallel manner. Experiments demonstrate the effectiveness of the proposed approach.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2011.2163491</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Blocking ; Coarse-to-fine strategy ; Feature extraction ; geometric constraint ; Geometric constraints ; Image registration ; large-size image registration ; Least squares method ; Matching ; Multilevel ; Optimization ; parallel-based architecture ; Remote sensing ; Satellites ; Spatial resolution ; Strategy</subject><ispartof>IEEE geoscience and remote sensing letters, 2012-03, Vol.9 (2), p.171-175</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-dba4a24e77639afcdc55b46cc2fbc3be64958ecc88572787f58b130067ab12413</citedby><cites>FETCH-LOGICAL-c358t-dba4a24e77639afcdc55b46cc2fbc3be64958ecc88572787f58b130067ab12413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6012513$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6012513$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huo, Chunlei</creatorcontrib><creatorcontrib>Pan, Chunhong</creatorcontrib><creatorcontrib>Huo, Leigang</creatorcontrib><creatorcontrib>Zhou, Zhixin</creatorcontrib><title>Multilevel SIFT Matching for Large-Size VHR Image Registration</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>A fast approach is proposed in this letter for large-size very high resolution image registration, which is accomplished based on coarse-to-fine strategy and blockwise scale-invariant feature transform (SIFT) matching. Coarse registration is implemented at low resolution level, which provides a geometric constraint. The constraint makes the blockwise SIFT matching possible and is helpful for getting more matched keypoints at the latter refined procedure. Refined registration is achieved by blockwise SIFT matching and global optimization on the whole matched keypoints based on iterative reweighted least squares. To improve the efficiency, blockwise SIFT matching is implemented in a parallel manner. Experiments demonstrate the effectiveness of the proposed approach.</description><subject>Accuracy</subject><subject>Blocking</subject><subject>Coarse-to-fine strategy</subject><subject>Feature extraction</subject><subject>geometric constraint</subject><subject>Geometric constraints</subject><subject>Image registration</subject><subject>large-size image registration</subject><subject>Least squares method</subject><subject>Matching</subject><subject>Multilevel</subject><subject>Optimization</subject><subject>parallel-based architecture</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Spatial resolution</subject><subject>Strategy</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkEtLw0AUhYMoWKs_QNwEV25S584jM9kIUuwDUoS2irswmd7ElDSpM4mgv96EFhduXN2z-M6B-3neNZARAInu4-lyNaIEYEQhZDyCE28AQqiACAmnfeYiEJF6O_cunNsSQrlScuA9LNqyKUr8xNJfzSdrf6Eb815UuZ_V1o-1zTFYFd_ov86W_nync_SXmBeusbop6urSO8t06fDqeIfey-RpPZ4F8fN0Pn6MA8OEaoJNqrmmHKUMWaQzszFCpDw0hmapYSmGPBIKjVFKSCqVzIRKgRESSp0C5cCG3t1hd2_rjxZdk-wKZ7AsdYV16xKQkjBBuVT_owSikLEIeIfe_kG3dWur7pEkooSCJKrfgwNkbO2cxSzZ22Kn7Ve3lPTuk9590rtPju67zs2hUyDiLx8SoAIY-wELK31J</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Huo, Chunlei</creator><creator>Pan, Chunhong</creator><creator>Huo, Leigang</creator><creator>Zhou, Zhixin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20120301</creationdate><title>Multilevel SIFT Matching for Large-Size VHR Image Registration</title><author>Huo, Chunlei ; Pan, Chunhong ; Huo, Leigang ; Zhou, Zhixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-dba4a24e77639afcdc55b46cc2fbc3be64958ecc88572787f58b130067ab12413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Blocking</topic><topic>Coarse-to-fine strategy</topic><topic>Feature extraction</topic><topic>geometric constraint</topic><topic>Geometric constraints</topic><topic>Image registration</topic><topic>large-size image registration</topic><topic>Least squares method</topic><topic>Matching</topic><topic>Multilevel</topic><topic>Optimization</topic><topic>parallel-based architecture</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Spatial resolution</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Chunlei</creatorcontrib><creatorcontrib>Pan, Chunhong</creatorcontrib><creatorcontrib>Huo, Leigang</creatorcontrib><creatorcontrib>Zhou, Zhixin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huo, Chunlei</au><au>Pan, Chunhong</au><au>Huo, Leigang</au><au>Zhou, Zhixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilevel SIFT Matching for Large-Size VHR Image Registration</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>9</volume><issue>2</issue><spage>171</spage><epage>175</epage><pages>171-175</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>A fast approach is proposed in this letter for large-size very high resolution image registration, which is accomplished based on coarse-to-fine strategy and blockwise scale-invariant feature transform (SIFT) matching. Coarse registration is implemented at low resolution level, which provides a geometric constraint. The constraint makes the blockwise SIFT matching possible and is helpful for getting more matched keypoints at the latter refined procedure. Refined registration is achieved by blockwise SIFT matching and global optimization on the whole matched keypoints based on iterative reweighted least squares. To improve the efficiency, blockwise SIFT matching is implemented in a parallel manner. Experiments demonstrate the effectiveness of the proposed approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2011.2163491</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2012-03, Vol.9 (2), p.171-175 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770352478 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Blocking Coarse-to-fine strategy Feature extraction geometric constraint Geometric constraints Image registration large-size image registration Least squares method Matching Multilevel Optimization parallel-based architecture Remote sensing Satellites Spatial resolution Strategy |
title | Multilevel SIFT Matching for Large-Size VHR Image Registration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilevel%20SIFT%20Matching%20for%20Large-Size%20VHR%20Image%20Registration&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Huo,%20Chunlei&rft.date=2012-03-01&rft.volume=9&rft.issue=2&rft.spage=171&rft.epage=175&rft.pages=171-175&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2011.2163491&rft_dat=%3Cproquest_RIE%3E1019633914%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920217088&rft_id=info:pmid/&rft_ieee_id=6012513&rfr_iscdi=true |