Cross-Spectra Over the Sea from Observations and Mesoscale Modelling

Cospectra and quadrature spectra are calculated for six pairs of tall offshore measurement masts near the Horns Rev I wind farm in the Danish North Sea and the Nysted wind farm in the Baltic sea. The mast-pairs are separated from one another by horizontal distances of 2.13–12.4 km. Cospectra and qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary-layer meteorology 2013-02, Vol.146 (2), p.297-318
Hauptverfasser: Vincent, C. L., Larsén, X. G., Larsen, S. E., Sørensen, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 2
container_start_page 297
container_title Boundary-layer meteorology
container_volume 146
creator Vincent, C. L.
Larsén, X. G.
Larsen, S. E.
Sørensen, P.
description Cospectra and quadrature spectra are calculated for six pairs of tall offshore measurement masts near the Horns Rev I wind farm in the Danish North Sea and the Nysted wind farm in the Baltic sea. The mast-pairs are separated from one another by horizontal distances of 2.13–12.4 km. Cospectra and quadrature spectra for the two sites are classified in terms of the angle between the mean wind direction and the line connecting each pair of masts. The frequency axes of the spectra are normalized to remove the effect of mean wind speed and separation distance. Results indicate a larger contribution to the quadrature spectrum for flow from the sea than for flow from the land, and the patterns in the spectra are clearer and better defined for Horns Rev I (which has a long uninterrupted sea-fetch from the west) than for Nysted (which is surrounded by a more complicated coastline). The analysis is replicated based on 3-month simulations using the weather research and forecasting (WRF) numerical model with a horizontal grid spacing of 2 km. For the sea-fetch directions, good agreement in spectral properties between the model and observations is found. Analytical expressions based on the properties of the cross-correlation function and an exponentially decaying coherence function are fitted to the normalized cospectra and quadrature spectra. The expressions are shown to be a good fit to the spectra calculated from the WRF simulations and to the observed spectra for directions with a long sea-fetch, which suggests that to a good approximation, the average cospectra and quadrature spectra over the sea can be written as functions of frequency, mean wind speed, separation distance and the angle between the wind direction and the orientation of the masts.
doi_str_mv 10.1007/s10546-012-9754-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770350993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A337070463</galeid><sourcerecordid>A337070463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-ca2fb7499c13bb13f54eb249c44bda30aa33d6b1b070e62087e4bcaa9faa3fe93</originalsourceid><addsrcrecordid>eNqFkVFrHCEUhaW00G3SH9C3gVDoi4lXnXF8DJu0CSTsQ9pnUee6nbCrG50N9N_XYUIpgVJ8EPU713PvIeQTsHNgTF0UYK3sKANOtWolhTdkBa0SFKTib8mKMdbRXoB8Tz6U8liPClq2IlfrnEqhDwf0U7bN5hlzM_3E5gFtE3LaNxtXMD_baUyxNDYOzT2WVLzdYXOfBtztxrg9Je-C3RX8-LKfkB9fr7-vb-jd5tvt-vKOeqnlRL3lwSmptQfhHIjQSnRcai-lG6xg1goxdA4cUww7znqF0nlrdagvAbU4IV-Wuoecno5YJrMfi68ebMR0LAaUYqJlWov_o1zD_IXsK3r2Cn1MxxxrI5VSnOlW9m2lzhdqW1s3YwypzsvXNeB-9CliGOv9pRCqupfd7AAWgZ8nnDGYQx73Nv8ywMycmVkyMzUzM2dmoGo-v1ix84hDttGP5Y-Qq64qel45vnClPsUt5r8s_7P4b-n-pF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272095485</pqid></control><display><type>article</type><title>Cross-Spectra Over the Sea from Observations and Mesoscale Modelling</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vincent, C. L. ; Larsén, X. G. ; Larsen, S. E. ; Sørensen, P.</creator><creatorcontrib>Vincent, C. L. ; Larsén, X. G. ; Larsen, S. E. ; Sørensen, P.</creatorcontrib><description>Cospectra and quadrature spectra are calculated for six pairs of tall offshore measurement masts near the Horns Rev I wind farm in the Danish North Sea and the Nysted wind farm in the Baltic sea. The mast-pairs are separated from one another by horizontal distances of 2.13–12.4 km. Cospectra and quadrature spectra for the two sites are classified in terms of the angle between the mean wind direction and the line connecting each pair of masts. The frequency axes of the spectra are normalized to remove the effect of mean wind speed and separation distance. Results indicate a larger contribution to the quadrature spectrum for flow from the sea than for flow from the land, and the patterns in the spectra are clearer and better defined for Horns Rev I (which has a long uninterrupted sea-fetch from the west) than for Nysted (which is surrounded by a more complicated coastline). The analysis is replicated based on 3-month simulations using the weather research and forecasting (WRF) numerical model with a horizontal grid spacing of 2 km. For the sea-fetch directions, good agreement in spectral properties between the model and observations is found. Analytical expressions based on the properties of the cross-correlation function and an exponentially decaying coherence function are fitted to the normalized cospectra and quadrature spectra. The expressions are shown to be a good fit to the spectra calculated from the WRF simulations and to the observed spectra for directions with a long sea-fetch, which suggests that to a good approximation, the average cospectra and quadrature spectra over the sea can be written as functions of frequency, mean wind speed, separation distance and the angle between the wind direction and the orientation of the masts.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-012-9754-1</identifier><identifier>CODEN: BLMEBR</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Applied sciences ; Atmospheric pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Buildings and facilities ; Computer simulation ; Convection, turbulence, diffusion. Boundary layer structure and dynamics ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Horizontal ; Horns ; Invisibility ; Masts ; Mathematical analysis ; Mathematical models ; Mesoscale convective complexes ; Meteorology ; Numerical weather forecasting ; Pollution ; Pollution sources. Measurement results ; Quadratures ; Spectra ; Toy industry ; Wind farms ; Wind power ; Wind shear ; Wind speed</subject><ispartof>Boundary-layer meteorology, 2013-02, Vol.146 (2), p.297-318</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-ca2fb7499c13bb13f54eb249c44bda30aa33d6b1b070e62087e4bcaa9faa3fe93</citedby><cites>FETCH-LOGICAL-c494t-ca2fb7499c13bb13f54eb249c44bda30aa33d6b1b070e62087e4bcaa9faa3fe93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-012-9754-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-012-9754-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27605482$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vincent, C. L.</creatorcontrib><creatorcontrib>Larsén, X. G.</creatorcontrib><creatorcontrib>Larsen, S. E.</creatorcontrib><creatorcontrib>Sørensen, P.</creatorcontrib><title>Cross-Spectra Over the Sea from Observations and Mesoscale Modelling</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>Cospectra and quadrature spectra are calculated for six pairs of tall offshore measurement masts near the Horns Rev I wind farm in the Danish North Sea and the Nysted wind farm in the Baltic sea. The mast-pairs are separated from one another by horizontal distances of 2.13–12.4 km. Cospectra and quadrature spectra for the two sites are classified in terms of the angle between the mean wind direction and the line connecting each pair of masts. The frequency axes of the spectra are normalized to remove the effect of mean wind speed and separation distance. Results indicate a larger contribution to the quadrature spectrum for flow from the sea than for flow from the land, and the patterns in the spectra are clearer and better defined for Horns Rev I (which has a long uninterrupted sea-fetch from the west) than for Nysted (which is surrounded by a more complicated coastline). The analysis is replicated based on 3-month simulations using the weather research and forecasting (WRF) numerical model with a horizontal grid spacing of 2 km. For the sea-fetch directions, good agreement in spectral properties between the model and observations is found. Analytical expressions based on the properties of the cross-correlation function and an exponentially decaying coherence function are fitted to the normalized cospectra and quadrature spectra. The expressions are shown to be a good fit to the spectra calculated from the WRF simulations and to the observed spectra for directions with a long sea-fetch, which suggests that to a good approximation, the average cospectra and quadrature spectra over the sea can be written as functions of frequency, mean wind speed, separation distance and the angle between the wind direction and the orientation of the masts.</description><subject>Analysis</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Buildings and facilities</subject><subject>Computer simulation</subject><subject>Convection, turbulence, diffusion. Boundary layer structure and dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Horizontal</subject><subject>Horns</subject><subject>Invisibility</subject><subject>Masts</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mesoscale convective complexes</subject><subject>Meteorology</subject><subject>Numerical weather forecasting</subject><subject>Pollution</subject><subject>Pollution sources. Measurement results</subject><subject>Quadratures</subject><subject>Spectra</subject><subject>Toy industry</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind shear</subject><subject>Wind speed</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkVFrHCEUhaW00G3SH9C3gVDoi4lXnXF8DJu0CSTsQ9pnUee6nbCrG50N9N_XYUIpgVJ8EPU713PvIeQTsHNgTF0UYK3sKANOtWolhTdkBa0SFKTib8mKMdbRXoB8Tz6U8liPClq2IlfrnEqhDwf0U7bN5hlzM_3E5gFtE3LaNxtXMD_baUyxNDYOzT2WVLzdYXOfBtztxrg9Je-C3RX8-LKfkB9fr7-vb-jd5tvt-vKOeqnlRL3lwSmptQfhHIjQSnRcai-lG6xg1goxdA4cUww7znqF0nlrdagvAbU4IV-Wuoecno5YJrMfi68ebMR0LAaUYqJlWov_o1zD_IXsK3r2Cn1MxxxrI5VSnOlW9m2lzhdqW1s3YwypzsvXNeB-9CliGOv9pRCqupfd7AAWgZ8nnDGYQx73Nv8ywMycmVkyMzUzM2dmoGo-v1ix84hDttGP5Y-Qq64qel45vnClPsUt5r8s_7P4b-n-pF0</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Vincent, C. L.</creator><creator>Larsén, X. G.</creator><creator>Larsen, S. E.</creator><creator>Sørensen, P.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20130201</creationdate><title>Cross-Spectra Over the Sea from Observations and Mesoscale Modelling</title><author>Vincent, C. L. ; Larsén, X. G. ; Larsen, S. E. ; Sørensen, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-ca2fb7499c13bb13f54eb249c44bda30aa33d6b1b070e62087e4bcaa9faa3fe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Buildings and facilities</topic><topic>Computer simulation</topic><topic>Convection, turbulence, diffusion. Boundary layer structure and dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Horizontal</topic><topic>Horns</topic><topic>Invisibility</topic><topic>Masts</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mesoscale convective complexes</topic><topic>Meteorology</topic><topic>Numerical weather forecasting</topic><topic>Pollution</topic><topic>Pollution sources. Measurement results</topic><topic>Quadratures</topic><topic>Spectra</topic><topic>Toy industry</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind shear</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vincent, C. L.</creatorcontrib><creatorcontrib>Larsén, X. G.</creatorcontrib><creatorcontrib>Larsen, S. E.</creatorcontrib><creatorcontrib>Sørensen, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vincent, C. L.</au><au>Larsén, X. G.</au><au>Larsen, S. E.</au><au>Sørensen, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Spectra Over the Sea from Observations and Mesoscale Modelling</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>146</volume><issue>2</issue><spage>297</spage><epage>318</epage><pages>297-318</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><coden>BLMEBR</coden><abstract>Cospectra and quadrature spectra are calculated for six pairs of tall offshore measurement masts near the Horns Rev I wind farm in the Danish North Sea and the Nysted wind farm in the Baltic sea. The mast-pairs are separated from one another by horizontal distances of 2.13–12.4 km. Cospectra and quadrature spectra for the two sites are classified in terms of the angle between the mean wind direction and the line connecting each pair of masts. The frequency axes of the spectra are normalized to remove the effect of mean wind speed and separation distance. Results indicate a larger contribution to the quadrature spectrum for flow from the sea than for flow from the land, and the patterns in the spectra are clearer and better defined for Horns Rev I (which has a long uninterrupted sea-fetch from the west) than for Nysted (which is surrounded by a more complicated coastline). The analysis is replicated based on 3-month simulations using the weather research and forecasting (WRF) numerical model with a horizontal grid spacing of 2 km. For the sea-fetch directions, good agreement in spectral properties between the model and observations is found. Analytical expressions based on the properties of the cross-correlation function and an exponentially decaying coherence function are fitted to the normalized cospectra and quadrature spectra. The expressions are shown to be a good fit to the spectra calculated from the WRF simulations and to the observed spectra for directions with a long sea-fetch, which suggests that to a good approximation, the average cospectra and quadrature spectra over the sea can be written as functions of frequency, mean wind speed, separation distance and the angle between the wind direction and the orientation of the masts.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-012-9754-1</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8314
ispartof Boundary-layer meteorology, 2013-02, Vol.146 (2), p.297-318
issn 0006-8314
1573-1472
language eng
recordid cdi_proquest_miscellaneous_1770350993
source SpringerLink Journals - AutoHoldings
subjects Analysis
Applied sciences
Atmospheric pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Buildings and facilities
Computer simulation
Convection, turbulence, diffusion. Boundary layer structure and dynamics
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Exact sciences and technology
External geophysics
Horizontal
Horns
Invisibility
Masts
Mathematical analysis
Mathematical models
Mesoscale convective complexes
Meteorology
Numerical weather forecasting
Pollution
Pollution sources. Measurement results
Quadratures
Spectra
Toy industry
Wind farms
Wind power
Wind shear
Wind speed
title Cross-Spectra Over the Sea from Observations and Mesoscale Modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Spectra%20Over%20the%20Sea%20from%20Observations%20and%20Mesoscale%20Modelling&rft.jtitle=Boundary-layer%20meteorology&rft.au=Vincent,%20C.%20L.&rft.date=2013-02-01&rft.volume=146&rft.issue=2&rft.spage=297&rft.epage=318&rft.pages=297-318&rft.issn=0006-8314&rft.eissn=1573-1472&rft.coden=BLMEBR&rft_id=info:doi/10.1007/s10546-012-9754-1&rft_dat=%3Cgale_proqu%3EA337070463%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272095485&rft_id=info:pmid/&rft_galeid=A337070463&rfr_iscdi=true