Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms

A method for efficiently screening a wide compositional and structural phase space of LISICON‐type superionic conductors is presented that utilizes a machine‐learning technique for combining theoretical and experimental datasets. By iteratively performing systematic sets of first‐principles calculat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2013-08, Vol.3 (8), p.980-985
Hauptverfasser: Fujimura, Koji, Seko, Atsuto, Koyama, Yukinori, Kuwabara, Akihide, Kishida, Ippei, Shitara, Kazuki, Fisher, Craig A. J., Moriwake, Hiroki, Tanaka, Isao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 985
container_issue 8
container_start_page 980
container_title Advanced energy materials
container_volume 3
creator Fujimura, Koji
Seko, Atsuto
Koyama, Yukinori
Kuwabara, Akihide
Kishida, Ippei
Shitara, Kazuki
Fisher, Craig A. J.
Moriwake, Hiroki
Tanaka, Isao
description A method for efficiently screening a wide compositional and structural phase space of LISICON‐type superionic conductors is presented that utilizes a machine‐learning technique for combining theoretical and experimental datasets. By iteratively performing systematic sets of first‐principles calculations and focused experiments, it is shown how the materials design process can be greatly accelerated, suggesting potentially superior candidate lithium superionic conductors.
doi_str_mv 10.1002/aenm.201300060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770343308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770343308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-698a405440c34b9bba3ea36aba713aeeee0256e45be968ba7629ce03e64337573</originalsourceid><addsrcrecordid>eNqFkUtv3CAQgK2qkRqlufaMlEsv3gwGY_u4u82jzeZRtVWPCJPZDakNG7DV5t4fnllttIpyCQcYwfcNDJNlnzhMOEBxbND3kwK4AAAF77J9rrjMVS3h_S4WxYfsMKV7QkA2HITYz_5PrcUOoxnwll3SHJ3pEvuCya08C0u2cMOdG3v2Y1zTWfDOsnnwt6MdQkxsZhJ5wbNTF9OQ30TnrVt3mNjcdHbszEBKYsZvkts755Et0ETv_IpNu1WIlL1PH7O9Jd2Kh8_rQfbr9OTn_DxfXJ99nU8XuRV1DblqaiOhlBKskG3TtkagEcq0puLCIA0oSoWybLFRNe2qorEIApUUoiorcZB93uZdx_AwYhp07xKV3xmPYUyaVxUIYqEm9OgVeh_G6Ol1mkv655LzghM12VI2hpQiLvU6ut7ER81Bb_qiN33Ru76Q0GyFv67DxzdoPT25unzp5lvXpQH_7VwT_2hVUX3699WZ_n4xg2ZWgv4mngC8UKEL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1420151121</pqid></control><display><type>article</type><title>Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms</title><source>Wiley Online Library All Journals</source><creator>Fujimura, Koji ; Seko, Atsuto ; Koyama, Yukinori ; Kuwabara, Akihide ; Kishida, Ippei ; Shitara, Kazuki ; Fisher, Craig A. J. ; Moriwake, Hiroki ; Tanaka, Isao</creator><creatorcontrib>Fujimura, Koji ; Seko, Atsuto ; Koyama, Yukinori ; Kuwabara, Akihide ; Kishida, Ippei ; Shitara, Kazuki ; Fisher, Craig A. J. ; Moriwake, Hiroki ; Tanaka, Isao</creatorcontrib><description>A method for efficiently screening a wide compositional and structural phase space of LISICON‐type superionic conductors is presented that utilizes a machine‐learning technique for combining theoretical and experimental datasets. By iteratively performing systematic sets of first‐principles calculations and focused experiments, it is shown how the materials design process can be greatly accelerated, suggesting potentially superior candidate lithium superionic conductors.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201300060</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>cluster expansion ; Clusters ; Conductors ; Design engineering ; first-principles molecular dynamics ; LISICON ; Lithium ; Mathematical analysis ; Regression ; Screening ; solid electrolyte ; Solid electrolytes ; support-vector regression</subject><ispartof>Advanced energy materials, 2013-08, Vol.3 (8), p.980-985</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-698a405440c34b9bba3ea36aba713aeeee0256e45be968ba7629ce03e64337573</citedby><cites>FETCH-LOGICAL-c3880-698a405440c34b9bba3ea36aba713aeeee0256e45be968ba7629ce03e64337573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201300060$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201300060$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Fujimura, Koji</creatorcontrib><creatorcontrib>Seko, Atsuto</creatorcontrib><creatorcontrib>Koyama, Yukinori</creatorcontrib><creatorcontrib>Kuwabara, Akihide</creatorcontrib><creatorcontrib>Kishida, Ippei</creatorcontrib><creatorcontrib>Shitara, Kazuki</creatorcontrib><creatorcontrib>Fisher, Craig A. J.</creatorcontrib><creatorcontrib>Moriwake, Hiroki</creatorcontrib><creatorcontrib>Tanaka, Isao</creatorcontrib><title>Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>A method for efficiently screening a wide compositional and structural phase space of LISICON‐type superionic conductors is presented that utilizes a machine‐learning technique for combining theoretical and experimental datasets. By iteratively performing systematic sets of first‐principles calculations and focused experiments, it is shown how the materials design process can be greatly accelerated, suggesting potentially superior candidate lithium superionic conductors.</description><subject>cluster expansion</subject><subject>Clusters</subject><subject>Conductors</subject><subject>Design engineering</subject><subject>first-principles molecular dynamics</subject><subject>LISICON</subject><subject>Lithium</subject><subject>Mathematical analysis</subject><subject>Regression</subject><subject>Screening</subject><subject>solid electrolyte</subject><subject>Solid electrolytes</subject><subject>support-vector regression</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv3CAQgK2qkRqlufaMlEsv3gwGY_u4u82jzeZRtVWPCJPZDakNG7DV5t4fnllttIpyCQcYwfcNDJNlnzhMOEBxbND3kwK4AAAF77J9rrjMVS3h_S4WxYfsMKV7QkA2HITYz_5PrcUOoxnwll3SHJ3pEvuCya08C0u2cMOdG3v2Y1zTWfDOsnnwt6MdQkxsZhJ5wbNTF9OQ30TnrVt3mNjcdHbszEBKYsZvkts755Et0ETv_IpNu1WIlL1PH7O9Jd2Kh8_rQfbr9OTn_DxfXJ99nU8XuRV1DblqaiOhlBKskG3TtkagEcq0puLCIA0oSoWybLFRNe2qorEIApUUoiorcZB93uZdx_AwYhp07xKV3xmPYUyaVxUIYqEm9OgVeh_G6Ol1mkv655LzghM12VI2hpQiLvU6ut7ER81Bb_qiN33Ru76Q0GyFv67DxzdoPT25unzp5lvXpQH_7VwT_2hVUX3699WZ_n4xg2ZWgv4mngC8UKEL</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Fujimura, Koji</creator><creator>Seko, Atsuto</creator><creator>Koyama, Yukinori</creator><creator>Kuwabara, Akihide</creator><creator>Kishida, Ippei</creator><creator>Shitara, Kazuki</creator><creator>Fisher, Craig A. J.</creator><creator>Moriwake, Hiroki</creator><creator>Tanaka, Isao</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201308</creationdate><title>Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms</title><author>Fujimura, Koji ; Seko, Atsuto ; Koyama, Yukinori ; Kuwabara, Akihide ; Kishida, Ippei ; Shitara, Kazuki ; Fisher, Craig A. J. ; Moriwake, Hiroki ; Tanaka, Isao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-698a405440c34b9bba3ea36aba713aeeee0256e45be968ba7629ce03e64337573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>cluster expansion</topic><topic>Clusters</topic><topic>Conductors</topic><topic>Design engineering</topic><topic>first-principles molecular dynamics</topic><topic>LISICON</topic><topic>Lithium</topic><topic>Mathematical analysis</topic><topic>Regression</topic><topic>Screening</topic><topic>solid electrolyte</topic><topic>Solid electrolytes</topic><topic>support-vector regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujimura, Koji</creatorcontrib><creatorcontrib>Seko, Atsuto</creatorcontrib><creatorcontrib>Koyama, Yukinori</creatorcontrib><creatorcontrib>Kuwabara, Akihide</creatorcontrib><creatorcontrib>Kishida, Ippei</creatorcontrib><creatorcontrib>Shitara, Kazuki</creatorcontrib><creatorcontrib>Fisher, Craig A. J.</creatorcontrib><creatorcontrib>Moriwake, Hiroki</creatorcontrib><creatorcontrib>Tanaka, Isao</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujimura, Koji</au><au>Seko, Atsuto</au><au>Koyama, Yukinori</au><au>Kuwabara, Akihide</au><au>Kishida, Ippei</au><au>Shitara, Kazuki</au><au>Fisher, Craig A. J.</au><au>Moriwake, Hiroki</au><au>Tanaka, Isao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2013-08</date><risdate>2013</risdate><volume>3</volume><issue>8</issue><spage>980</spage><epage>985</epage><pages>980-985</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>A method for efficiently screening a wide compositional and structural phase space of LISICON‐type superionic conductors is presented that utilizes a machine‐learning technique for combining theoretical and experimental datasets. By iteratively performing systematic sets of first‐principles calculations and focused experiments, it is shown how the materials design process can be greatly accelerated, suggesting potentially superior candidate lithium superionic conductors.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/aenm.201300060</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2013-08, Vol.3 (8), p.980-985
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_miscellaneous_1770343308
source Wiley Online Library All Journals
subjects cluster expansion
Clusters
Conductors
Design engineering
first-principles molecular dynamics
LISICON
Lithium
Mathematical analysis
Regression
Screening
solid electrolyte
Solid electrolytes
support-vector regression
title Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Materials%20Design%20of%20Lithium%20Superionic%20Conductors%20Based%20on%20First-Principles%20Calculations%20and%20Machine%20Learning%20Algorithms&rft.jtitle=Advanced%20energy%20materials&rft.au=Fujimura,%20Koji&rft.date=2013-08&rft.volume=3&rft.issue=8&rft.spage=980&rft.epage=985&rft.pages=980-985&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201300060&rft_dat=%3Cproquest_cross%3E1770343308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1420151121&rft_id=info:pmid/&rfr_iscdi=true