Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures

The solubilities of indomethacin (IMC) in 1,4-dioxane + water cosolvent mixtures were determined at several temperatures, 293.15–313.15 K. The thermodynamic functions: Gibbs energy, enthalpy, and entropy of solution and of mixing were obtained from these data by using the van’t Hoff and Gibbs equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid phase equilibria 2010-12, Vol.299 (2), p.259-265
Hauptverfasser: Ruidiaz, Miller A., Delgado, Daniel R., Martínez, Fleming, Marcus, Yizhak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 2
container_start_page 259
container_title Fluid phase equilibria
container_volume 299
creator Ruidiaz, Miller A.
Delgado, Daniel R.
Martínez, Fleming
Marcus, Yizhak
description The solubilities of indomethacin (IMC) in 1,4-dioxane + water cosolvent mixtures were determined at several temperatures, 293.15–313.15 K. The thermodynamic functions: Gibbs energy, enthalpy, and entropy of solution and of mixing were obtained from these data by using the van’t Hoff and Gibbs equations. The solubility was maximal in 0.95 mass fraction of 1,4-dioxane and very low in pure water at all the temperatures. A non-linear plot of Δ H soln ° vs. Δ G soln ° with negative slope from pure water up to 0.60 mass fraction of 1,4-dioxane and positive beyond this up to 0.95 mass fraction of 1,4-dioxane was obtained. Accordingly, the driving mechanism for IMC solubility in water-rich mixtures is the entropy, probably due to water-structure loss around the drug non-polar moieties by 1,4-dioxane, whereas, above 0.60 mass fraction of 1,4-dioxane the driving mechanism is the enthalpy, probably due to IMC solvation increase by the co-solvent molecules. The preferential solvation of IMC by the components of the solvent was estimated by means of the quasi-lattice quasi-chemical method, whereas the inverse Kirkwood-Buff integral method could not be applied because of divergence of the integrals in intermediate compositions.
doi_str_mv 10.1016/j.fluid.2010.09.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770339913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378381210004838</els_id><sourcerecordid>1038287783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-b0bb34ef8c6d10a05a9f3322bc0c3ecaf4e1eb7fcfecc2968b21c615992ac9ed3</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVJoZu0v6AXXQqB1tuR5LWtQw4l9AsCPbQ5BiGPR1SL1tpIcpr8-2qzIcf2JEY877zDw9hbAWsBovu4Xbuw-Gktof6AXoPsX7CVGHrdgJTtCVuB6odGDUK-Yqc5bwFAbDq5Yjc_Y1hGH3x54Hae-D6Ro0Rz8TbwHMOdLT7OPDru5ynuqPy26Oc6cPGhbSYf7-1M_D3_Ywulx0DN8p2_L0ui_Jq9dDZkevP0nrHrL59_XX5rrn58_X756apBpXVpRhhH1ZIbsJsEWNhY7ZSSckRARWhdS4LG3qEjRKm7YZQCO7HRWlrUNKkzdn7cu0_xdqFczM5npBDqcXHJRvQ9qFol1P9RUIMc-n44oOqIYoo5VzFmn_zOpocKmYN3szWP3s3BuwFtqveaevdUYDPa4JKd0efnqFSdgk3bVu7iyFEVc-cpmYyeZqTJJ8Jipuj_2fMXmpSbKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038287783</pqid></control><display><type>article</type><title>Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Ruidiaz, Miller A. ; Delgado, Daniel R. ; Martínez, Fleming ; Marcus, Yizhak</creator><creatorcontrib>Ruidiaz, Miller A. ; Delgado, Daniel R. ; Martínez, Fleming ; Marcus, Yizhak</creatorcontrib><description>The solubilities of indomethacin (IMC) in 1,4-dioxane + water cosolvent mixtures were determined at several temperatures, 293.15–313.15 K. The thermodynamic functions: Gibbs energy, enthalpy, and entropy of solution and of mixing were obtained from these data by using the van’t Hoff and Gibbs equations. The solubility was maximal in 0.95 mass fraction of 1,4-dioxane and very low in pure water at all the temperatures. A non-linear plot of Δ H soln ° vs. Δ G soln ° with negative slope from pure water up to 0.60 mass fraction of 1,4-dioxane and positive beyond this up to 0.95 mass fraction of 1,4-dioxane was obtained. Accordingly, the driving mechanism for IMC solubility in water-rich mixtures is the entropy, probably due to water-structure loss around the drug non-polar moieties by 1,4-dioxane, whereas, above 0.60 mass fraction of 1,4-dioxane the driving mechanism is the enthalpy, probably due to IMC solvation increase by the co-solvent molecules. The preferential solvation of IMC by the components of the solvent was estimated by means of the quasi-lattice quasi-chemical method, whereas the inverse Kirkwood-Buff integral method could not be applied because of divergence of the integrals in intermediate compositions.</description><identifier>ISSN: 0378-3812</identifier><identifier>EISSN: 1879-0224</identifier><identifier>DOI: 10.1016/j.fluid.2010.09.027</identifier><identifier>CODEN: FPEQDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>1,4-Dioxane ; Activity coefficients ; Biological and medical sciences ; Bones, joints and connective tissue. Antiinflammatory agents ; Chemistry ; Driving ; Enthalpy ; Entropy ; Exact sciences and technology ; General and physical chemistry ; Gibbs equations ; Indomethacin ; Integrals ; Medical sciences ; Pharmacology. Drug treatments ; Preferential solvation ; Solubility ; Solution thermodynamics ; Solutions ; Solvation ; Solvents</subject><ispartof>Fluid phase equilibria, 2010-12, Vol.299 (2), p.259-265</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-b0bb34ef8c6d10a05a9f3322bc0c3ecaf4e1eb7fcfecc2968b21c615992ac9ed3</citedby><cites>FETCH-LOGICAL-c399t-b0bb34ef8c6d10a05a9f3322bc0c3ecaf4e1eb7fcfecc2968b21c615992ac9ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fluid.2010.09.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23630544$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruidiaz, Miller A.</creatorcontrib><creatorcontrib>Delgado, Daniel R.</creatorcontrib><creatorcontrib>Martínez, Fleming</creatorcontrib><creatorcontrib>Marcus, Yizhak</creatorcontrib><title>Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures</title><title>Fluid phase equilibria</title><description>The solubilities of indomethacin (IMC) in 1,4-dioxane + water cosolvent mixtures were determined at several temperatures, 293.15–313.15 K. The thermodynamic functions: Gibbs energy, enthalpy, and entropy of solution and of mixing were obtained from these data by using the van’t Hoff and Gibbs equations. The solubility was maximal in 0.95 mass fraction of 1,4-dioxane and very low in pure water at all the temperatures. A non-linear plot of Δ H soln ° vs. Δ G soln ° with negative slope from pure water up to 0.60 mass fraction of 1,4-dioxane and positive beyond this up to 0.95 mass fraction of 1,4-dioxane was obtained. Accordingly, the driving mechanism for IMC solubility in water-rich mixtures is the entropy, probably due to water-structure loss around the drug non-polar moieties by 1,4-dioxane, whereas, above 0.60 mass fraction of 1,4-dioxane the driving mechanism is the enthalpy, probably due to IMC solvation increase by the co-solvent molecules. The preferential solvation of IMC by the components of the solvent was estimated by means of the quasi-lattice quasi-chemical method, whereas the inverse Kirkwood-Buff integral method could not be applied because of divergence of the integrals in intermediate compositions.</description><subject>1,4-Dioxane</subject><subject>Activity coefficients</subject><subject>Biological and medical sciences</subject><subject>Bones, joints and connective tissue. Antiinflammatory agents</subject><subject>Chemistry</subject><subject>Driving</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Gibbs equations</subject><subject>Indomethacin</subject><subject>Integrals</subject><subject>Medical sciences</subject><subject>Pharmacology. Drug treatments</subject><subject>Preferential solvation</subject><subject>Solubility</subject><subject>Solution thermodynamics</subject><subject>Solutions</subject><subject>Solvation</subject><subject>Solvents</subject><issn>0378-3812</issn><issn>1879-0224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVJoZu0v6AXXQqB1tuR5LWtQw4l9AsCPbQ5BiGPR1SL1tpIcpr8-2qzIcf2JEY877zDw9hbAWsBovu4Xbuw-Gktof6AXoPsX7CVGHrdgJTtCVuB6odGDUK-Yqc5bwFAbDq5Yjc_Y1hGH3x54Hae-D6Ro0Rz8TbwHMOdLT7OPDru5ynuqPy26Oc6cPGhbSYf7-1M_D3_Ywulx0DN8p2_L0ui_Jq9dDZkevP0nrHrL59_XX5rrn58_X756apBpXVpRhhH1ZIbsJsEWNhY7ZSSckRARWhdS4LG3qEjRKm7YZQCO7HRWlrUNKkzdn7cu0_xdqFczM5npBDqcXHJRvQ9qFol1P9RUIMc-n44oOqIYoo5VzFmn_zOpocKmYN3szWP3s3BuwFtqveaevdUYDPa4JKd0efnqFSdgk3bVu7iyFEVc-cpmYyeZqTJJ8Jipuj_2fMXmpSbKA</recordid><startdate>20101225</startdate><enddate>20101225</enddate><creator>Ruidiaz, Miller A.</creator><creator>Delgado, Daniel R.</creator><creator>Martínez, Fleming</creator><creator>Marcus, Yizhak</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20101225</creationdate><title>Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures</title><author>Ruidiaz, Miller A. ; Delgado, Daniel R. ; Martínez, Fleming ; Marcus, Yizhak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-b0bb34ef8c6d10a05a9f3322bc0c3ecaf4e1eb7fcfecc2968b21c615992ac9ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>1,4-Dioxane</topic><topic>Activity coefficients</topic><topic>Biological and medical sciences</topic><topic>Bones, joints and connective tissue. Antiinflammatory agents</topic><topic>Chemistry</topic><topic>Driving</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Gibbs equations</topic><topic>Indomethacin</topic><topic>Integrals</topic><topic>Medical sciences</topic><topic>Pharmacology. Drug treatments</topic><topic>Preferential solvation</topic><topic>Solubility</topic><topic>Solution thermodynamics</topic><topic>Solutions</topic><topic>Solvation</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruidiaz, Miller A.</creatorcontrib><creatorcontrib>Delgado, Daniel R.</creatorcontrib><creatorcontrib>Martínez, Fleming</creatorcontrib><creatorcontrib>Marcus, Yizhak</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fluid phase equilibria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruidiaz, Miller A.</au><au>Delgado, Daniel R.</au><au>Martínez, Fleming</au><au>Marcus, Yizhak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures</atitle><jtitle>Fluid phase equilibria</jtitle><date>2010-12-25</date><risdate>2010</risdate><volume>299</volume><issue>2</issue><spage>259</spage><epage>265</epage><pages>259-265</pages><issn>0378-3812</issn><eissn>1879-0224</eissn><coden>FPEQDT</coden><abstract>The solubilities of indomethacin (IMC) in 1,4-dioxane + water cosolvent mixtures were determined at several temperatures, 293.15–313.15 K. The thermodynamic functions: Gibbs energy, enthalpy, and entropy of solution and of mixing were obtained from these data by using the van’t Hoff and Gibbs equations. The solubility was maximal in 0.95 mass fraction of 1,4-dioxane and very low in pure water at all the temperatures. A non-linear plot of Δ H soln ° vs. Δ G soln ° with negative slope from pure water up to 0.60 mass fraction of 1,4-dioxane and positive beyond this up to 0.95 mass fraction of 1,4-dioxane was obtained. Accordingly, the driving mechanism for IMC solubility in water-rich mixtures is the entropy, probably due to water-structure loss around the drug non-polar moieties by 1,4-dioxane, whereas, above 0.60 mass fraction of 1,4-dioxane the driving mechanism is the enthalpy, probably due to IMC solvation increase by the co-solvent molecules. The preferential solvation of IMC by the components of the solvent was estimated by means of the quasi-lattice quasi-chemical method, whereas the inverse Kirkwood-Buff integral method could not be applied because of divergence of the integrals in intermediate compositions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fluid.2010.09.027</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-3812
ispartof Fluid phase equilibria, 2010-12, Vol.299 (2), p.259-265
issn 0378-3812
1879-0224
language eng
recordid cdi_proquest_miscellaneous_1770339913
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects 1,4-Dioxane
Activity coefficients
Biological and medical sciences
Bones, joints and connective tissue. Antiinflammatory agents
Chemistry
Driving
Enthalpy
Entropy
Exact sciences and technology
General and physical chemistry
Gibbs equations
Indomethacin
Integrals
Medical sciences
Pharmacology. Drug treatments
Preferential solvation
Solubility
Solution thermodynamics
Solutions
Solvation
Solvents
title Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solubility%20and%20preferential%20solvation%20of%20indomethacin%20in%201,4-dioxane%20+%20water%20solvent%20mixtures&rft.jtitle=Fluid%20phase%20equilibria&rft.au=Ruidiaz,%20Miller%20A.&rft.date=2010-12-25&rft.volume=299&rft.issue=2&rft.spage=259&rft.epage=265&rft.pages=259-265&rft.issn=0378-3812&rft.eissn=1879-0224&rft.coden=FPEQDT&rft_id=info:doi/10.1016/j.fluid.2010.09.027&rft_dat=%3Cproquest_cross%3E1038287783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038287783&rft_id=info:pmid/&rft_els_id=S0378381210004838&rfr_iscdi=true