MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm
► The modified algorithm based on Priestley–Taylor ET model is developed. ► There is a good agreement between our estimated LE and field-measured LE. ► Variations of terrestrial LE in China are responding to a large-scale droughts and afforestation. Because of China's large size, satellite obse...
Gespeichert in:
Veröffentlicht in: | Agricultural and forest meteorology 2013-04, Vol.171-172, p.187-202 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | |
container_start_page | 187 |
container_title | Agricultural and forest meteorology |
container_volume | 171-172 |
creator | Yao, Yunjun Liang, Shunlin Cheng, Jie Liu, Shaomin Fisher, Joshua B. Zhang, Xudong Jia, Kun Zhao, Xiang Qin, Qiming Zhao, Bin Han, Shijie Zhou, Guangsheng Zhou, Guoyi Li, Yuelin Zhao, Shaohua |
description | ► The modified algorithm based on Priestley–Taylor ET model is developed. ► There is a good agreement between our estimated LE and field-measured LE. ► Variations of terrestrial LE in China are responding to a large-scale droughts and afforestation.
Because of China's large size, satellite observations are necessary for estimation of the land surface latent heat flux (LE). We describe here a satellite-driven Priestley–Taylor (PT)-based algorithm constrained by the Normalized Difference Vegetation Index (NDVI) and Apparent Thermal Inertia (ATI) derived from temperature change over time. We compare to the satellite-driven PT-based approach, PT-JPL, and validate both models using data collected from 16 eddy covariance flux towers in China. Like PT-JPL, our proposed algorithm avoids the computational complexities of aerodynamic resistance parameters. We run the algorithms with monthly Moderate Resolution Imaging Spectroradiometer (MODIS) products (0.05° resolution), including albedo, Land Surface Temperature (LST), surface emissivity, and NDVI; and, Insolation from the Japan Aerospace Exploration Agency (JAXA). We find good agreement between our estimates of monthly LE and field-measured LE, with respective Root Mean Square Error (RMSE) and bias differences of 12.5Wm−2 and −6.4Wm−2. As compared with PT-JPL, our proposed algorithm has higher correlations with ground-measurements. Between 2001 and 2010, LE shows generally negative trends in most regions of China, though positive LE trends occur over 39% of the region, primarily in Northeast, North and South China. Our results indicate that the variations of terrestrial LE are responding to large-scale droughts and afforestation caused by human activity with direct links to terrestrial energy exchange, both spatially and temporally. |
doi_str_mv | 10.1016/j.agrformet.2012.11.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770336433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016819231200353X</els_id><sourcerecordid>1770336433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-4e126d41f975d94936fd75dcb3fa9bac7ca0169f558622d62e4cc255e833a1b43</originalsourceid><addsrcrecordid>eNqNkU1u2zAQhYWiBeqmPUO4KdCNVPFPNJeB-xcgRQokWRNjahjToMSEpIN61zvkhjlJaTjItl2RfPjezHBe05zSvqM9HT5vO7hNLqYJS8d6yjpKu6q_ahZ0qXjLmOhfN4uqLFuqGX_bvMt521dQKb1o7n9efjm_asfkH3AmmIufoPg4k-hIwZSqkjwEEqDgXMgGoRAXdr-Jn8lq42cga8g4kuoAMsXRO19fv5KvxoD7pz-P17APMREItzH5spneN28chIwfns-T5ubb1-vVj_bi8vv56uyitYLL0gqkbBgFdVrJUQvNBzfWm11zB3oNVlmof9JOyuXA2DgwFNYyKXHJOdC14CfNp2PduxTvd3UcM_lsMQSYMe6yoUr1nA-C8_9AudRMCkYrqo6oTTHnhM7cpbqytDe0N4c8zNa85GEOeRhKTdWr8-NzE8gWgkswW59f7ExRqTjXlTs9cg7ioVRlbq5qIVEzUwPTh3HPjgTW9T14TCZbj7PF0Se0xYzR_3OavyPGr_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735925421</pqid></control><display><type>article</type><title>MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Yao, Yunjun ; Liang, Shunlin ; Cheng, Jie ; Liu, Shaomin ; Fisher, Joshua B. ; Zhang, Xudong ; Jia, Kun ; Zhao, Xiang ; Qin, Qiming ; Zhao, Bin ; Han, Shijie ; Zhou, Guangsheng ; Zhou, Guoyi ; Li, Yuelin ; Zhao, Shaohua</creator><creatorcontrib>Yao, Yunjun ; Liang, Shunlin ; Cheng, Jie ; Liu, Shaomin ; Fisher, Joshua B. ; Zhang, Xudong ; Jia, Kun ; Zhao, Xiang ; Qin, Qiming ; Zhao, Bin ; Han, Shijie ; Zhou, Guangsheng ; Zhou, Guoyi ; Li, Yuelin ; Zhao, Shaohua</creatorcontrib><description>► The modified algorithm based on Priestley–Taylor ET model is developed. ► There is a good agreement between our estimated LE and field-measured LE. ► Variations of terrestrial LE in China are responding to a large-scale droughts and afforestation.
Because of China's large size, satellite observations are necessary for estimation of the land surface latent heat flux (LE). We describe here a satellite-driven Priestley–Taylor (PT)-based algorithm constrained by the Normalized Difference Vegetation Index (NDVI) and Apparent Thermal Inertia (ATI) derived from temperature change over time. We compare to the satellite-driven PT-based approach, PT-JPL, and validate both models using data collected from 16 eddy covariance flux towers in China. Like PT-JPL, our proposed algorithm avoids the computational complexities of aerodynamic resistance parameters. We run the algorithms with monthly Moderate Resolution Imaging Spectroradiometer (MODIS) products (0.05° resolution), including albedo, Land Surface Temperature (LST), surface emissivity, and NDVI; and, Insolation from the Japan Aerospace Exploration Agency (JAXA). We find good agreement between our estimates of monthly LE and field-measured LE, with respective Root Mean Square Error (RMSE) and bias differences of 12.5Wm−2 and −6.4Wm−2. As compared with PT-JPL, our proposed algorithm has higher correlations with ground-measurements. Between 2001 and 2010, LE shows generally negative trends in most regions of China, though positive LE trends occur over 39% of the region, primarily in Northeast, North and South China. Our results indicate that the variations of terrestrial LE are responding to large-scale droughts and afforestation caused by human activity with direct links to terrestrial energy exchange, both spatially and temporally.</description><identifier>ISSN: 0168-1923</identifier><identifier>EISSN: 1873-2240</identifier><identifier>DOI: 10.1016/j.agrformet.2012.11.016</identifier><identifier>CODEN: AFMEEB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>afforestation ; Agricultural and forest climatology and meteorology. Irrigation. Drainage ; Agricultural and forest meteorology ; Agronomy. Soil science and plant productions ; Algorithms ; anthropogenic activities ; Biological and medical sciences ; China ; drought ; eddy covariance ; energy transfer ; Evapotranspiration ; Flux ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; heat transfer ; Land surface temperature ; Latent heat ; Latent heat flux ; Mathematical models ; moderate resolution imaging spectroradiometer ; MODIS ; Platinum ; Priestley–Taylor ; satellites ; solar radiation ; surface temperature ; Trends ; vegetation ; Water balance and requirements. Evapotranspiration</subject><ispartof>Agricultural and forest meteorology, 2013-04, Vol.171-172, p.187-202</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-4e126d41f975d94936fd75dcb3fa9bac7ca0169f558622d62e4cc255e833a1b43</citedby><cites>FETCH-LOGICAL-c435t-4e126d41f975d94936fd75dcb3fa9bac7ca0169f558622d62e4cc255e833a1b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016819231200353X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27157339$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Yunjun</creatorcontrib><creatorcontrib>Liang, Shunlin</creatorcontrib><creatorcontrib>Cheng, Jie</creatorcontrib><creatorcontrib>Liu, Shaomin</creatorcontrib><creatorcontrib>Fisher, Joshua B.</creatorcontrib><creatorcontrib>Zhang, Xudong</creatorcontrib><creatorcontrib>Jia, Kun</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><creatorcontrib>Qin, Qiming</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Han, Shijie</creatorcontrib><creatorcontrib>Zhou, Guangsheng</creatorcontrib><creatorcontrib>Zhou, Guoyi</creatorcontrib><creatorcontrib>Li, Yuelin</creatorcontrib><creatorcontrib>Zhao, Shaohua</creatorcontrib><title>MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm</title><title>Agricultural and forest meteorology</title><description>► The modified algorithm based on Priestley–Taylor ET model is developed. ► There is a good agreement between our estimated LE and field-measured LE. ► Variations of terrestrial LE in China are responding to a large-scale droughts and afforestation.
Because of China's large size, satellite observations are necessary for estimation of the land surface latent heat flux (LE). We describe here a satellite-driven Priestley–Taylor (PT)-based algorithm constrained by the Normalized Difference Vegetation Index (NDVI) and Apparent Thermal Inertia (ATI) derived from temperature change over time. We compare to the satellite-driven PT-based approach, PT-JPL, and validate both models using data collected from 16 eddy covariance flux towers in China. Like PT-JPL, our proposed algorithm avoids the computational complexities of aerodynamic resistance parameters. We run the algorithms with monthly Moderate Resolution Imaging Spectroradiometer (MODIS) products (0.05° resolution), including albedo, Land Surface Temperature (LST), surface emissivity, and NDVI; and, Insolation from the Japan Aerospace Exploration Agency (JAXA). We find good agreement between our estimates of monthly LE and field-measured LE, with respective Root Mean Square Error (RMSE) and bias differences of 12.5Wm−2 and −6.4Wm−2. As compared with PT-JPL, our proposed algorithm has higher correlations with ground-measurements. Between 2001 and 2010, LE shows generally negative trends in most regions of China, though positive LE trends occur over 39% of the region, primarily in Northeast, North and South China. Our results indicate that the variations of terrestrial LE are responding to large-scale droughts and afforestation caused by human activity with direct links to terrestrial energy exchange, both spatially and temporally.</description><subject>afforestation</subject><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage</subject><subject>Agricultural and forest meteorology</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Algorithms</subject><subject>anthropogenic activities</subject><subject>Biological and medical sciences</subject><subject>China</subject><subject>drought</subject><subject>eddy covariance</subject><subject>energy transfer</subject><subject>Evapotranspiration</subject><subject>Flux</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>heat transfer</subject><subject>Land surface temperature</subject><subject>Latent heat</subject><subject>Latent heat flux</subject><subject>Mathematical models</subject><subject>moderate resolution imaging spectroradiometer</subject><subject>MODIS</subject><subject>Platinum</subject><subject>Priestley–Taylor</subject><subject>satellites</subject><subject>solar radiation</subject><subject>surface temperature</subject><subject>Trends</subject><subject>vegetation</subject><subject>Water balance and requirements. Evapotranspiration</subject><issn>0168-1923</issn><issn>1873-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1u2zAQhYWiBeqmPUO4KdCNVPFPNJeB-xcgRQokWRNjahjToMSEpIN61zvkhjlJaTjItl2RfPjezHBe05zSvqM9HT5vO7hNLqYJS8d6yjpKu6q_ahZ0qXjLmOhfN4uqLFuqGX_bvMt521dQKb1o7n9efjm_asfkH3AmmIufoPg4k-hIwZSqkjwEEqDgXMgGoRAXdr-Jn8lq42cga8g4kuoAMsXRO19fv5KvxoD7pz-P17APMREItzH5spneN28chIwfns-T5ubb1-vVj_bi8vv56uyitYLL0gqkbBgFdVrJUQvNBzfWm11zB3oNVlmof9JOyuXA2DgwFNYyKXHJOdC14CfNp2PduxTvd3UcM_lsMQSYMe6yoUr1nA-C8_9AudRMCkYrqo6oTTHnhM7cpbqytDe0N4c8zNa85GEOeRhKTdWr8-NzE8gWgkswW59f7ExRqTjXlTs9cg7ioVRlbq5qIVEzUwPTh3HPjgTW9T14TCZbj7PF0Se0xYzR_3OavyPGr_Y</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Yao, Yunjun</creator><creator>Liang, Shunlin</creator><creator>Cheng, Jie</creator><creator>Liu, Shaomin</creator><creator>Fisher, Joshua B.</creator><creator>Zhang, Xudong</creator><creator>Jia, Kun</creator><creator>Zhao, Xiang</creator><creator>Qin, Qiming</creator><creator>Zhao, Bin</creator><creator>Han, Shijie</creator><creator>Zhou, Guangsheng</creator><creator>Zhou, Guoyi</creator><creator>Li, Yuelin</creator><creator>Zhao, Shaohua</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>KL.</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130401</creationdate><title>MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm</title><author>Yao, Yunjun ; Liang, Shunlin ; Cheng, Jie ; Liu, Shaomin ; Fisher, Joshua B. ; Zhang, Xudong ; Jia, Kun ; Zhao, Xiang ; Qin, Qiming ; Zhao, Bin ; Han, Shijie ; Zhou, Guangsheng ; Zhou, Guoyi ; Li, Yuelin ; Zhao, Shaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-4e126d41f975d94936fd75dcb3fa9bac7ca0169f558622d62e4cc255e833a1b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>afforestation</topic><topic>Agricultural and forest climatology and meteorology. Irrigation. Drainage</topic><topic>Agricultural and forest meteorology</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Algorithms</topic><topic>anthropogenic activities</topic><topic>Biological and medical sciences</topic><topic>China</topic><topic>drought</topic><topic>eddy covariance</topic><topic>energy transfer</topic><topic>Evapotranspiration</topic><topic>Flux</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>heat transfer</topic><topic>Land surface temperature</topic><topic>Latent heat</topic><topic>Latent heat flux</topic><topic>Mathematical models</topic><topic>moderate resolution imaging spectroradiometer</topic><topic>MODIS</topic><topic>Platinum</topic><topic>Priestley–Taylor</topic><topic>satellites</topic><topic>solar radiation</topic><topic>surface temperature</topic><topic>Trends</topic><topic>vegetation</topic><topic>Water balance and requirements. Evapotranspiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Yunjun</creatorcontrib><creatorcontrib>Liang, Shunlin</creatorcontrib><creatorcontrib>Cheng, Jie</creatorcontrib><creatorcontrib>Liu, Shaomin</creatorcontrib><creatorcontrib>Fisher, Joshua B.</creatorcontrib><creatorcontrib>Zhang, Xudong</creatorcontrib><creatorcontrib>Jia, Kun</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><creatorcontrib>Qin, Qiming</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Han, Shijie</creatorcontrib><creatorcontrib>Zhou, Guangsheng</creatorcontrib><creatorcontrib>Zhou, Guoyi</creatorcontrib><creatorcontrib>Li, Yuelin</creatorcontrib><creatorcontrib>Zhao, Shaohua</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Agricultural and forest meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Yunjun</au><au>Liang, Shunlin</au><au>Cheng, Jie</au><au>Liu, Shaomin</au><au>Fisher, Joshua B.</au><au>Zhang, Xudong</au><au>Jia, Kun</au><au>Zhao, Xiang</au><au>Qin, Qiming</au><au>Zhao, Bin</au><au>Han, Shijie</au><au>Zhou, Guangsheng</au><au>Zhou, Guoyi</au><au>Li, Yuelin</au><au>Zhao, Shaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm</atitle><jtitle>Agricultural and forest meteorology</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>171-172</volume><spage>187</spage><epage>202</epage><pages>187-202</pages><issn>0168-1923</issn><eissn>1873-2240</eissn><coden>AFMEEB</coden><abstract>► The modified algorithm based on Priestley–Taylor ET model is developed. ► There is a good agreement between our estimated LE and field-measured LE. ► Variations of terrestrial LE in China are responding to a large-scale droughts and afforestation.
Because of China's large size, satellite observations are necessary for estimation of the land surface latent heat flux (LE). We describe here a satellite-driven Priestley–Taylor (PT)-based algorithm constrained by the Normalized Difference Vegetation Index (NDVI) and Apparent Thermal Inertia (ATI) derived from temperature change over time. We compare to the satellite-driven PT-based approach, PT-JPL, and validate both models using data collected from 16 eddy covariance flux towers in China. Like PT-JPL, our proposed algorithm avoids the computational complexities of aerodynamic resistance parameters. We run the algorithms with monthly Moderate Resolution Imaging Spectroradiometer (MODIS) products (0.05° resolution), including albedo, Land Surface Temperature (LST), surface emissivity, and NDVI; and, Insolation from the Japan Aerospace Exploration Agency (JAXA). We find good agreement between our estimates of monthly LE and field-measured LE, with respective Root Mean Square Error (RMSE) and bias differences of 12.5Wm−2 and −6.4Wm−2. As compared with PT-JPL, our proposed algorithm has higher correlations with ground-measurements. Between 2001 and 2010, LE shows generally negative trends in most regions of China, though positive LE trends occur over 39% of the region, primarily in Northeast, North and South China. Our results indicate that the variations of terrestrial LE are responding to large-scale droughts and afforestation caused by human activity with direct links to terrestrial energy exchange, both spatially and temporally.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.agrformet.2012.11.016</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1923 |
ispartof | Agricultural and forest meteorology, 2013-04, Vol.171-172, p.187-202 |
issn | 0168-1923 1873-2240 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770336433 |
source | Elsevier ScienceDirect Journals |
subjects | afforestation Agricultural and forest climatology and meteorology. Irrigation. Drainage Agricultural and forest meteorology Agronomy. Soil science and plant productions Algorithms anthropogenic activities Biological and medical sciences China drought eddy covariance energy transfer Evapotranspiration Flux Fundamental and applied biological sciences. Psychology General agronomy. Plant production heat transfer Land surface temperature Latent heat Latent heat flux Mathematical models moderate resolution imaging spectroradiometer MODIS Platinum Priestley–Taylor satellites solar radiation surface temperature Trends vegetation Water balance and requirements. Evapotranspiration |
title | MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODIS-driven%20estimation%20of%20terrestrial%20latent%20heat%20flux%20in%20China%20based%20on%20a%20modified%20Priestley%E2%80%93Taylor%20algorithm&rft.jtitle=Agricultural%20and%20forest%20meteorology&rft.au=Yao,%20Yunjun&rft.date=2013-04-01&rft.volume=171-172&rft.spage=187&rft.epage=202&rft.pages=187-202&rft.issn=0168-1923&rft.eissn=1873-2240&rft.coden=AFMEEB&rft_id=info:doi/10.1016/j.agrformet.2012.11.016&rft_dat=%3Cproquest_cross%3E1770336433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735925421&rft_id=info:pmid/&rft_els_id=S016819231200353X&rfr_iscdi=true |