MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm

► The modified algorithm based on Priestley–Taylor ET model is developed. ► There is a good agreement between our estimated LE and field-measured LE. ► Variations of terrestrial LE in China are responding to a large-scale droughts and afforestation. Because of China's large size, satellite obse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agricultural and forest meteorology 2013-04, Vol.171-172, p.187-202
Hauptverfasser: Yao, Yunjun, Liang, Shunlin, Cheng, Jie, Liu, Shaomin, Fisher, Joshua B., Zhang, Xudong, Jia, Kun, Zhao, Xiang, Qin, Qiming, Zhao, Bin, Han, Shijie, Zhou, Guangsheng, Zhou, Guoyi, Li, Yuelin, Zhao, Shaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue
container_start_page 187
container_title Agricultural and forest meteorology
container_volume 171-172
creator Yao, Yunjun
Liang, Shunlin
Cheng, Jie
Liu, Shaomin
Fisher, Joshua B.
Zhang, Xudong
Jia, Kun
Zhao, Xiang
Qin, Qiming
Zhao, Bin
Han, Shijie
Zhou, Guangsheng
Zhou, Guoyi
Li, Yuelin
Zhao, Shaohua
description ► The modified algorithm based on Priestley–Taylor ET model is developed. ► There is a good agreement between our estimated LE and field-measured LE. ► Variations of terrestrial LE in China are responding to a large-scale droughts and afforestation. Because of China's large size, satellite observations are necessary for estimation of the land surface latent heat flux (LE). We describe here a satellite-driven Priestley–Taylor (PT)-based algorithm constrained by the Normalized Difference Vegetation Index (NDVI) and Apparent Thermal Inertia (ATI) derived from temperature change over time. We compare to the satellite-driven PT-based approach, PT-JPL, and validate both models using data collected from 16 eddy covariance flux towers in China. Like PT-JPL, our proposed algorithm avoids the computational complexities of aerodynamic resistance parameters. We run the algorithms with monthly Moderate Resolution Imaging Spectroradiometer (MODIS) products (0.05° resolution), including albedo, Land Surface Temperature (LST), surface emissivity, and NDVI; and, Insolation from the Japan Aerospace Exploration Agency (JAXA). We find good agreement between our estimates of monthly LE and field-measured LE, with respective Root Mean Square Error (RMSE) and bias differences of 12.5Wm−2 and −6.4Wm−2. As compared with PT-JPL, our proposed algorithm has higher correlations with ground-measurements. Between 2001 and 2010, LE shows generally negative trends in most regions of China, though positive LE trends occur over 39% of the region, primarily in Northeast, North and South China. Our results indicate that the variations of terrestrial LE are responding to large-scale droughts and afforestation caused by human activity with direct links to terrestrial energy exchange, both spatially and temporally.
doi_str_mv 10.1016/j.agrformet.2012.11.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770336433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016819231200353X</els_id><sourcerecordid>1770336433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-4e126d41f975d94936fd75dcb3fa9bac7ca0169f558622d62e4cc255e833a1b43</originalsourceid><addsrcrecordid>eNqNkU1u2zAQhYWiBeqmPUO4KdCNVPFPNJeB-xcgRQokWRNjahjToMSEpIN61zvkhjlJaTjItl2RfPjezHBe05zSvqM9HT5vO7hNLqYJS8d6yjpKu6q_ahZ0qXjLmOhfN4uqLFuqGX_bvMt521dQKb1o7n9efjm_asfkH3AmmIufoPg4k-hIwZSqkjwEEqDgXMgGoRAXdr-Jn8lq42cga8g4kuoAMsXRO19fv5KvxoD7pz-P17APMREItzH5spneN28chIwfns-T5ubb1-vVj_bi8vv56uyitYLL0gqkbBgFdVrJUQvNBzfWm11zB3oNVlmof9JOyuXA2DgwFNYyKXHJOdC14CfNp2PduxTvd3UcM_lsMQSYMe6yoUr1nA-C8_9AudRMCkYrqo6oTTHnhM7cpbqytDe0N4c8zNa85GEOeRhKTdWr8-NzE8gWgkswW59f7ExRqTjXlTs9cg7ioVRlbq5qIVEzUwPTh3HPjgTW9T14TCZbj7PF0Se0xYzR_3OavyPGr_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735925421</pqid></control><display><type>article</type><title>MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Yao, Yunjun ; Liang, Shunlin ; Cheng, Jie ; Liu, Shaomin ; Fisher, Joshua B. ; Zhang, Xudong ; Jia, Kun ; Zhao, Xiang ; Qin, Qiming ; Zhao, Bin ; Han, Shijie ; Zhou, Guangsheng ; Zhou, Guoyi ; Li, Yuelin ; Zhao, Shaohua</creator><creatorcontrib>Yao, Yunjun ; Liang, Shunlin ; Cheng, Jie ; Liu, Shaomin ; Fisher, Joshua B. ; Zhang, Xudong ; Jia, Kun ; Zhao, Xiang ; Qin, Qiming ; Zhao, Bin ; Han, Shijie ; Zhou, Guangsheng ; Zhou, Guoyi ; Li, Yuelin ; Zhao, Shaohua</creatorcontrib><description>► The modified algorithm based on Priestley–Taylor ET model is developed. ► There is a good agreement between our estimated LE and field-measured LE. ► Variations of terrestrial LE in China are responding to a large-scale droughts and afforestation. Because of China's large size, satellite observations are necessary for estimation of the land surface latent heat flux (LE). We describe here a satellite-driven Priestley–Taylor (PT)-based algorithm constrained by the Normalized Difference Vegetation Index (NDVI) and Apparent Thermal Inertia (ATI) derived from temperature change over time. We compare to the satellite-driven PT-based approach, PT-JPL, and validate both models using data collected from 16 eddy covariance flux towers in China. Like PT-JPL, our proposed algorithm avoids the computational complexities of aerodynamic resistance parameters. We run the algorithms with monthly Moderate Resolution Imaging Spectroradiometer (MODIS) products (0.05° resolution), including albedo, Land Surface Temperature (LST), surface emissivity, and NDVI; and, Insolation from the Japan Aerospace Exploration Agency (JAXA). We find good agreement between our estimates of monthly LE and field-measured LE, with respective Root Mean Square Error (RMSE) and bias differences of 12.5Wm−2 and −6.4Wm−2. As compared with PT-JPL, our proposed algorithm has higher correlations with ground-measurements. Between 2001 and 2010, LE shows generally negative trends in most regions of China, though positive LE trends occur over 39% of the region, primarily in Northeast, North and South China. Our results indicate that the variations of terrestrial LE are responding to large-scale droughts and afforestation caused by human activity with direct links to terrestrial energy exchange, both spatially and temporally.</description><identifier>ISSN: 0168-1923</identifier><identifier>EISSN: 1873-2240</identifier><identifier>DOI: 10.1016/j.agrformet.2012.11.016</identifier><identifier>CODEN: AFMEEB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>afforestation ; Agricultural and forest climatology and meteorology. Irrigation. Drainage ; Agricultural and forest meteorology ; Agronomy. Soil science and plant productions ; Algorithms ; anthropogenic activities ; Biological and medical sciences ; China ; drought ; eddy covariance ; energy transfer ; Evapotranspiration ; Flux ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; heat transfer ; Land surface temperature ; Latent heat ; Latent heat flux ; Mathematical models ; moderate resolution imaging spectroradiometer ; MODIS ; Platinum ; Priestley–Taylor ; satellites ; solar radiation ; surface temperature ; Trends ; vegetation ; Water balance and requirements. Evapotranspiration</subject><ispartof>Agricultural and forest meteorology, 2013-04, Vol.171-172, p.187-202</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-4e126d41f975d94936fd75dcb3fa9bac7ca0169f558622d62e4cc255e833a1b43</citedby><cites>FETCH-LOGICAL-c435t-4e126d41f975d94936fd75dcb3fa9bac7ca0169f558622d62e4cc255e833a1b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016819231200353X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27157339$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Yunjun</creatorcontrib><creatorcontrib>Liang, Shunlin</creatorcontrib><creatorcontrib>Cheng, Jie</creatorcontrib><creatorcontrib>Liu, Shaomin</creatorcontrib><creatorcontrib>Fisher, Joshua B.</creatorcontrib><creatorcontrib>Zhang, Xudong</creatorcontrib><creatorcontrib>Jia, Kun</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><creatorcontrib>Qin, Qiming</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Han, Shijie</creatorcontrib><creatorcontrib>Zhou, Guangsheng</creatorcontrib><creatorcontrib>Zhou, Guoyi</creatorcontrib><creatorcontrib>Li, Yuelin</creatorcontrib><creatorcontrib>Zhao, Shaohua</creatorcontrib><title>MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm</title><title>Agricultural and forest meteorology</title><description>► The modified algorithm based on Priestley–Taylor ET model is developed. ► There is a good agreement between our estimated LE and field-measured LE. ► Variations of terrestrial LE in China are responding to a large-scale droughts and afforestation. Because of China's large size, satellite observations are necessary for estimation of the land surface latent heat flux (LE). We describe here a satellite-driven Priestley–Taylor (PT)-based algorithm constrained by the Normalized Difference Vegetation Index (NDVI) and Apparent Thermal Inertia (ATI) derived from temperature change over time. We compare to the satellite-driven PT-based approach, PT-JPL, and validate both models using data collected from 16 eddy covariance flux towers in China. Like PT-JPL, our proposed algorithm avoids the computational complexities of aerodynamic resistance parameters. We run the algorithms with monthly Moderate Resolution Imaging Spectroradiometer (MODIS) products (0.05° resolution), including albedo, Land Surface Temperature (LST), surface emissivity, and NDVI; and, Insolation from the Japan Aerospace Exploration Agency (JAXA). We find good agreement between our estimates of monthly LE and field-measured LE, with respective Root Mean Square Error (RMSE) and bias differences of 12.5Wm−2 and −6.4Wm−2. As compared with PT-JPL, our proposed algorithm has higher correlations with ground-measurements. Between 2001 and 2010, LE shows generally negative trends in most regions of China, though positive LE trends occur over 39% of the region, primarily in Northeast, North and South China. Our results indicate that the variations of terrestrial LE are responding to large-scale droughts and afforestation caused by human activity with direct links to terrestrial energy exchange, both spatially and temporally.</description><subject>afforestation</subject><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage</subject><subject>Agricultural and forest meteorology</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Algorithms</subject><subject>anthropogenic activities</subject><subject>Biological and medical sciences</subject><subject>China</subject><subject>drought</subject><subject>eddy covariance</subject><subject>energy transfer</subject><subject>Evapotranspiration</subject><subject>Flux</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>heat transfer</subject><subject>Land surface temperature</subject><subject>Latent heat</subject><subject>Latent heat flux</subject><subject>Mathematical models</subject><subject>moderate resolution imaging spectroradiometer</subject><subject>MODIS</subject><subject>Platinum</subject><subject>Priestley–Taylor</subject><subject>satellites</subject><subject>solar radiation</subject><subject>surface temperature</subject><subject>Trends</subject><subject>vegetation</subject><subject>Water balance and requirements. Evapotranspiration</subject><issn>0168-1923</issn><issn>1873-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1u2zAQhYWiBeqmPUO4KdCNVPFPNJeB-xcgRQokWRNjahjToMSEpIN61zvkhjlJaTjItl2RfPjezHBe05zSvqM9HT5vO7hNLqYJS8d6yjpKu6q_ahZ0qXjLmOhfN4uqLFuqGX_bvMt521dQKb1o7n9efjm_asfkH3AmmIufoPg4k-hIwZSqkjwEEqDgXMgGoRAXdr-Jn8lq42cga8g4kuoAMsXRO19fv5KvxoD7pz-P17APMREItzH5spneN28chIwfns-T5ubb1-vVj_bi8vv56uyitYLL0gqkbBgFdVrJUQvNBzfWm11zB3oNVlmof9JOyuXA2DgwFNYyKXHJOdC14CfNp2PduxTvd3UcM_lsMQSYMe6yoUr1nA-C8_9AudRMCkYrqo6oTTHnhM7cpbqytDe0N4c8zNa85GEOeRhKTdWr8-NzE8gWgkswW59f7ExRqTjXlTs9cg7ioVRlbq5qIVEzUwPTh3HPjgTW9T14TCZbj7PF0Se0xYzR_3OavyPGr_Y</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Yao, Yunjun</creator><creator>Liang, Shunlin</creator><creator>Cheng, Jie</creator><creator>Liu, Shaomin</creator><creator>Fisher, Joshua B.</creator><creator>Zhang, Xudong</creator><creator>Jia, Kun</creator><creator>Zhao, Xiang</creator><creator>Qin, Qiming</creator><creator>Zhao, Bin</creator><creator>Han, Shijie</creator><creator>Zhou, Guangsheng</creator><creator>Zhou, Guoyi</creator><creator>Li, Yuelin</creator><creator>Zhao, Shaohua</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>KL.</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130401</creationdate><title>MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm</title><author>Yao, Yunjun ; Liang, Shunlin ; Cheng, Jie ; Liu, Shaomin ; Fisher, Joshua B. ; Zhang, Xudong ; Jia, Kun ; Zhao, Xiang ; Qin, Qiming ; Zhao, Bin ; Han, Shijie ; Zhou, Guangsheng ; Zhou, Guoyi ; Li, Yuelin ; Zhao, Shaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-4e126d41f975d94936fd75dcb3fa9bac7ca0169f558622d62e4cc255e833a1b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>afforestation</topic><topic>Agricultural and forest climatology and meteorology. Irrigation. Drainage</topic><topic>Agricultural and forest meteorology</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Algorithms</topic><topic>anthropogenic activities</topic><topic>Biological and medical sciences</topic><topic>China</topic><topic>drought</topic><topic>eddy covariance</topic><topic>energy transfer</topic><topic>Evapotranspiration</topic><topic>Flux</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>heat transfer</topic><topic>Land surface temperature</topic><topic>Latent heat</topic><topic>Latent heat flux</topic><topic>Mathematical models</topic><topic>moderate resolution imaging spectroradiometer</topic><topic>MODIS</topic><topic>Platinum</topic><topic>Priestley–Taylor</topic><topic>satellites</topic><topic>solar radiation</topic><topic>surface temperature</topic><topic>Trends</topic><topic>vegetation</topic><topic>Water balance and requirements. Evapotranspiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Yunjun</creatorcontrib><creatorcontrib>Liang, Shunlin</creatorcontrib><creatorcontrib>Cheng, Jie</creatorcontrib><creatorcontrib>Liu, Shaomin</creatorcontrib><creatorcontrib>Fisher, Joshua B.</creatorcontrib><creatorcontrib>Zhang, Xudong</creatorcontrib><creatorcontrib>Jia, Kun</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><creatorcontrib>Qin, Qiming</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Han, Shijie</creatorcontrib><creatorcontrib>Zhou, Guangsheng</creatorcontrib><creatorcontrib>Zhou, Guoyi</creatorcontrib><creatorcontrib>Li, Yuelin</creatorcontrib><creatorcontrib>Zhao, Shaohua</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Agricultural and forest meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Yunjun</au><au>Liang, Shunlin</au><au>Cheng, Jie</au><au>Liu, Shaomin</au><au>Fisher, Joshua B.</au><au>Zhang, Xudong</au><au>Jia, Kun</au><au>Zhao, Xiang</au><au>Qin, Qiming</au><au>Zhao, Bin</au><au>Han, Shijie</au><au>Zhou, Guangsheng</au><au>Zhou, Guoyi</au><au>Li, Yuelin</au><au>Zhao, Shaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm</atitle><jtitle>Agricultural and forest meteorology</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>171-172</volume><spage>187</spage><epage>202</epage><pages>187-202</pages><issn>0168-1923</issn><eissn>1873-2240</eissn><coden>AFMEEB</coden><abstract>► The modified algorithm based on Priestley–Taylor ET model is developed. ► There is a good agreement between our estimated LE and field-measured LE. ► Variations of terrestrial LE in China are responding to a large-scale droughts and afforestation. Because of China's large size, satellite observations are necessary for estimation of the land surface latent heat flux (LE). We describe here a satellite-driven Priestley–Taylor (PT)-based algorithm constrained by the Normalized Difference Vegetation Index (NDVI) and Apparent Thermal Inertia (ATI) derived from temperature change over time. We compare to the satellite-driven PT-based approach, PT-JPL, and validate both models using data collected from 16 eddy covariance flux towers in China. Like PT-JPL, our proposed algorithm avoids the computational complexities of aerodynamic resistance parameters. We run the algorithms with monthly Moderate Resolution Imaging Spectroradiometer (MODIS) products (0.05° resolution), including albedo, Land Surface Temperature (LST), surface emissivity, and NDVI; and, Insolation from the Japan Aerospace Exploration Agency (JAXA). We find good agreement between our estimates of monthly LE and field-measured LE, with respective Root Mean Square Error (RMSE) and bias differences of 12.5Wm−2 and −6.4Wm−2. As compared with PT-JPL, our proposed algorithm has higher correlations with ground-measurements. Between 2001 and 2010, LE shows generally negative trends in most regions of China, though positive LE trends occur over 39% of the region, primarily in Northeast, North and South China. Our results indicate that the variations of terrestrial LE are responding to large-scale droughts and afforestation caused by human activity with direct links to terrestrial energy exchange, both spatially and temporally.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.agrformet.2012.11.016</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-1923
ispartof Agricultural and forest meteorology, 2013-04, Vol.171-172, p.187-202
issn 0168-1923
1873-2240
language eng
recordid cdi_proquest_miscellaneous_1770336433
source Elsevier ScienceDirect Journals
subjects afforestation
Agricultural and forest climatology and meteorology. Irrigation. Drainage
Agricultural and forest meteorology
Agronomy. Soil science and plant productions
Algorithms
anthropogenic activities
Biological and medical sciences
China
drought
eddy covariance
energy transfer
Evapotranspiration
Flux
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
heat transfer
Land surface temperature
Latent heat
Latent heat flux
Mathematical models
moderate resolution imaging spectroradiometer
MODIS
Platinum
Priestley–Taylor
satellites
solar radiation
surface temperature
Trends
vegetation
Water balance and requirements. Evapotranspiration
title MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODIS-driven%20estimation%20of%20terrestrial%20latent%20heat%20flux%20in%20China%20based%20on%20a%20modified%20Priestley%E2%80%93Taylor%20algorithm&rft.jtitle=Agricultural%20and%20forest%20meteorology&rft.au=Yao,%20Yunjun&rft.date=2013-04-01&rft.volume=171-172&rft.spage=187&rft.epage=202&rft.pages=187-202&rft.issn=0168-1923&rft.eissn=1873-2240&rft.coden=AFMEEB&rft_id=info:doi/10.1016/j.agrformet.2012.11.016&rft_dat=%3Cproquest_cross%3E1770336433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735925421&rft_id=info:pmid/&rft_els_id=S016819231200353X&rfr_iscdi=true