Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation

The fracture toughness of steel 15Kh2MFA(ІІ) after the PTL was investigated. It was established that the crack start is a multilevel process, in which the defining role is played by the turning modes of deformation. Regardless of the PTL modes in air and in the aggressive medium (electrolytic hydrog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied fracture mechanics 2013-02, Vol.63-64, p.63-68
Hauptverfasser: Yasniy, P.V., Okipnyi, I.B., Maruschak, P.O., Panin, S.V., Konovalenko, I.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue
container_start_page 63
container_title Theoretical and applied fracture mechanics
container_volume 63-64
creator Yasniy, P.V.
Okipnyi, I.B.
Maruschak, P.O.
Panin, S.V.
Konovalenko, I.V.
description The fracture toughness of steel 15Kh2MFA(ІІ) after the PTL was investigated. It was established that the crack start is a multilevel process, in which the defining role is played by the turning modes of deformation. Regardless of the PTL modes in air and in the aggressive medium (electrolytic hydrogen), the resistance to brittle failure of the steel investigated increases as compared to static fracture toughness of the material in the initial state.
doi_str_mv 10.1016/j.tafmec.2013.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770335142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167844213000384</els_id><sourcerecordid>1770335142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-ab0343a146894931ade3dbe3f083ef601a2e27a45fd45dd3bd624d93095c0973</originalsourceid><addsrcrecordid>eNqFkE9rGzEQxUVJoM6fb9CDjr2sK2nk1e4lUEybBgy5-C7G0iiWu951JLngb1-523MLD2YOv3kz8xj7JMVSCtl-OSwLhiO5pRISlqJKmA9sITujGtNCd8MWFTNNp7X6yO5yPgghjexhwXbrhO4nL_HEc0kYRz5MDoeYscRp5FXVd49jdJlPgYdKl3Oia78nLDxRjrngWOo40cAxFEp8f_FpeqPxj8kDuw04ZHr8W-_Z9vu37fpHs3l9fll_3TROKygN7gRoQKnbrtc9SPQEfkcQRAcUWiFRkTKoV8Hrlfew863SvgfRr5zoDdyzz7PtKU3vZ8rFHmN2NAw40nTOVhojAFayLvsvCka1WpkOKqpn1KUp50TBnlI8YrpYKew1fHuwc_j2Gr4VVeJ6zNM8RvXhX5GSzS7S6MjHRK5YP8V_G_wG-ROP9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372642783</pqid></control><display><type>article</type><title>Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yasniy, P.V. ; Okipnyi, I.B. ; Maruschak, P.O. ; Panin, S.V. ; Konovalenko, I.V.</creator><creatorcontrib>Yasniy, P.V. ; Okipnyi, I.B. ; Maruschak, P.O. ; Panin, S.V. ; Konovalenko, I.V.</creatorcontrib><description>The fracture toughness of steel 15Kh2MFA(ІІ) after the PTL was investigated. It was established that the crack start is a multilevel process, in which the defining role is played by the turning modes of deformation. Regardless of the PTL modes in air and in the aggressive medium (electrolytic hydrogen), the resistance to brittle failure of the steel investigated increases as compared to static fracture toughness of the material in the initial state.</description><identifier>ISSN: 0167-8442</identifier><identifier>EISSN: 1872-7638</identifier><identifier>DOI: 10.1016/j.tafmec.2013.03.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Failure ; Fatigue crack ; Fracture ; Fracture mechanics ; Fracture toughness ; Heat resistant steels ; Hydrogen embrittlement ; Hydrogenation ; Multilevel ; Steels ; Strain ; Strain localisation ; Thermomechanical loading</subject><ispartof>Theoretical and applied fracture mechanics, 2013-02, Vol.63-64, p.63-68</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-ab0343a146894931ade3dbe3f083ef601a2e27a45fd45dd3bd624d93095c0973</citedby><cites>FETCH-LOGICAL-c423t-ab0343a146894931ade3dbe3f083ef601a2e27a45fd45dd3bd624d93095c0973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tafmec.2013.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Yasniy, P.V.</creatorcontrib><creatorcontrib>Okipnyi, I.B.</creatorcontrib><creatorcontrib>Maruschak, P.O.</creatorcontrib><creatorcontrib>Panin, S.V.</creatorcontrib><creatorcontrib>Konovalenko, I.V.</creatorcontrib><title>Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation</title><title>Theoretical and applied fracture mechanics</title><description>The fracture toughness of steel 15Kh2MFA(ІІ) after the PTL was investigated. It was established that the crack start is a multilevel process, in which the defining role is played by the turning modes of deformation. Regardless of the PTL modes in air and in the aggressive medium (electrolytic hydrogen), the resistance to brittle failure of the steel investigated increases as compared to static fracture toughness of the material in the initial state.</description><subject>Failure</subject><subject>Fatigue crack</subject><subject>Fracture</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Heat resistant steels</subject><subject>Hydrogen embrittlement</subject><subject>Hydrogenation</subject><subject>Multilevel</subject><subject>Steels</subject><subject>Strain</subject><subject>Strain localisation</subject><subject>Thermomechanical loading</subject><issn>0167-8442</issn><issn>1872-7638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9rGzEQxUVJoM6fb9CDjr2sK2nk1e4lUEybBgy5-C7G0iiWu951JLngb1-523MLD2YOv3kz8xj7JMVSCtl-OSwLhiO5pRISlqJKmA9sITujGtNCd8MWFTNNp7X6yO5yPgghjexhwXbrhO4nL_HEc0kYRz5MDoeYscRp5FXVd49jdJlPgYdKl3Oia78nLDxRjrngWOo40cAxFEp8f_FpeqPxj8kDuw04ZHr8W-_Z9vu37fpHs3l9fll_3TROKygN7gRoQKnbrtc9SPQEfkcQRAcUWiFRkTKoV8Hrlfew863SvgfRr5zoDdyzz7PtKU3vZ8rFHmN2NAw40nTOVhojAFayLvsvCka1WpkOKqpn1KUp50TBnlI8YrpYKew1fHuwc_j2Gr4VVeJ6zNM8RvXhX5GSzS7S6MjHRK5YP8V_G_wG-ROP9g</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Yasniy, P.V.</creator><creator>Okipnyi, I.B.</creator><creator>Maruschak, P.O.</creator><creator>Panin, S.V.</creator><creator>Konovalenko, I.V.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20130201</creationdate><title>Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation</title><author>Yasniy, P.V. ; Okipnyi, I.B. ; Maruschak, P.O. ; Panin, S.V. ; Konovalenko, I.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-ab0343a146894931ade3dbe3f083ef601a2e27a45fd45dd3bd624d93095c0973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Failure</topic><topic>Fatigue crack</topic><topic>Fracture</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Heat resistant steels</topic><topic>Hydrogen embrittlement</topic><topic>Hydrogenation</topic><topic>Multilevel</topic><topic>Steels</topic><topic>Strain</topic><topic>Strain localisation</topic><topic>Thermomechanical loading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yasniy, P.V.</creatorcontrib><creatorcontrib>Okipnyi, I.B.</creatorcontrib><creatorcontrib>Maruschak, P.O.</creatorcontrib><creatorcontrib>Panin, S.V.</creatorcontrib><creatorcontrib>Konovalenko, I.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Theoretical and applied fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yasniy, P.V.</au><au>Okipnyi, I.B.</au><au>Maruschak, P.O.</au><au>Panin, S.V.</au><au>Konovalenko, I.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation</atitle><jtitle>Theoretical and applied fracture mechanics</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>63-64</volume><spage>63</spage><epage>68</epage><pages>63-68</pages><issn>0167-8442</issn><eissn>1872-7638</eissn><abstract>The fracture toughness of steel 15Kh2MFA(ІІ) after the PTL was investigated. It was established that the crack start is a multilevel process, in which the defining role is played by the turning modes of deformation. Regardless of the PTL modes in air and in the aggressive medium (electrolytic hydrogen), the resistance to brittle failure of the steel investigated increases as compared to static fracture toughness of the material in the initial state.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.tafmec.2013.03.007</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8442
ispartof Theoretical and applied fracture mechanics, 2013-02, Vol.63-64, p.63-68
issn 0167-8442
1872-7638
language eng
recordid cdi_proquest_miscellaneous_1770335142
source ScienceDirect Journals (5 years ago - present)
subjects Failure
Fatigue crack
Fracture
Fracture mechanics
Fracture toughness
Heat resistant steels
Hydrogen embrittlement
Hydrogenation
Multilevel
Steels
Strain
Strain localisation
Thermomechanical loading
title Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crack%20tip%20strain%20localisation%20on%20mechanics%20of%20fracture%20of%20heat%20resistant%20steel%20after%20hydrogenation&rft.jtitle=Theoretical%20and%20applied%20fracture%20mechanics&rft.au=Yasniy,%20P.V.&rft.date=2013-02-01&rft.volume=63-64&rft.spage=63&rft.epage=68&rft.pages=63-68&rft.issn=0167-8442&rft.eissn=1872-7638&rft_id=info:doi/10.1016/j.tafmec.2013.03.007&rft_dat=%3Cproquest_cross%3E1770335142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372642783&rft_id=info:pmid/&rft_els_id=S0167844213000384&rfr_iscdi=true