Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation
The fracture toughness of steel 15Kh2MFA(ІІ) after the PTL was investigated. It was established that the crack start is a multilevel process, in which the defining role is played by the turning modes of deformation. Regardless of the PTL modes in air and in the aggressive medium (electrolytic hydrog...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied fracture mechanics 2013-02, Vol.63-64, p.63-68 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | |
container_start_page | 63 |
container_title | Theoretical and applied fracture mechanics |
container_volume | 63-64 |
creator | Yasniy, P.V. Okipnyi, I.B. Maruschak, P.O. Panin, S.V. Konovalenko, I.V. |
description | The fracture toughness of steel 15Kh2MFA(ІІ) after the PTL was investigated. It was established that the crack start is a multilevel process, in which the defining role is played by the turning modes of deformation. Regardless of the PTL modes in air and in the aggressive medium (electrolytic hydrogen), the resistance to brittle failure of the steel investigated increases as compared to static fracture toughness of the material in the initial state. |
doi_str_mv | 10.1016/j.tafmec.2013.03.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770335142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167844213000384</els_id><sourcerecordid>1770335142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-ab0343a146894931ade3dbe3f083ef601a2e27a45fd45dd3bd624d93095c0973</originalsourceid><addsrcrecordid>eNqFkE9rGzEQxUVJoM6fb9CDjr2sK2nk1e4lUEybBgy5-C7G0iiWu951JLngb1-523MLD2YOv3kz8xj7JMVSCtl-OSwLhiO5pRISlqJKmA9sITujGtNCd8MWFTNNp7X6yO5yPgghjexhwXbrhO4nL_HEc0kYRz5MDoeYscRp5FXVd49jdJlPgYdKl3Oia78nLDxRjrngWOo40cAxFEp8f_FpeqPxj8kDuw04ZHr8W-_Z9vu37fpHs3l9fll_3TROKygN7gRoQKnbrtc9SPQEfkcQRAcUWiFRkTKoV8Hrlfew863SvgfRr5zoDdyzz7PtKU3vZ8rFHmN2NAw40nTOVhojAFayLvsvCka1WpkOKqpn1KUp50TBnlI8YrpYKew1fHuwc_j2Gr4VVeJ6zNM8RvXhX5GSzS7S6MjHRK5YP8V_G_wG-ROP9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372642783</pqid></control><display><type>article</type><title>Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yasniy, P.V. ; Okipnyi, I.B. ; Maruschak, P.O. ; Panin, S.V. ; Konovalenko, I.V.</creator><creatorcontrib>Yasniy, P.V. ; Okipnyi, I.B. ; Maruschak, P.O. ; Panin, S.V. ; Konovalenko, I.V.</creatorcontrib><description>The fracture toughness of steel 15Kh2MFA(ІІ) after the PTL was investigated. It was established that the crack start is a multilevel process, in which the defining role is played by the turning modes of deformation. Regardless of the PTL modes in air and in the aggressive medium (electrolytic hydrogen), the resistance to brittle failure of the steel investigated increases as compared to static fracture toughness of the material in the initial state.</description><identifier>ISSN: 0167-8442</identifier><identifier>EISSN: 1872-7638</identifier><identifier>DOI: 10.1016/j.tafmec.2013.03.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Failure ; Fatigue crack ; Fracture ; Fracture mechanics ; Fracture toughness ; Heat resistant steels ; Hydrogen embrittlement ; Hydrogenation ; Multilevel ; Steels ; Strain ; Strain localisation ; Thermomechanical loading</subject><ispartof>Theoretical and applied fracture mechanics, 2013-02, Vol.63-64, p.63-68</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-ab0343a146894931ade3dbe3f083ef601a2e27a45fd45dd3bd624d93095c0973</citedby><cites>FETCH-LOGICAL-c423t-ab0343a146894931ade3dbe3f083ef601a2e27a45fd45dd3bd624d93095c0973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tafmec.2013.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Yasniy, P.V.</creatorcontrib><creatorcontrib>Okipnyi, I.B.</creatorcontrib><creatorcontrib>Maruschak, P.O.</creatorcontrib><creatorcontrib>Panin, S.V.</creatorcontrib><creatorcontrib>Konovalenko, I.V.</creatorcontrib><title>Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation</title><title>Theoretical and applied fracture mechanics</title><description>The fracture toughness of steel 15Kh2MFA(ІІ) after the PTL was investigated. It was established that the crack start is a multilevel process, in which the defining role is played by the turning modes of deformation. Regardless of the PTL modes in air and in the aggressive medium (electrolytic hydrogen), the resistance to brittle failure of the steel investigated increases as compared to static fracture toughness of the material in the initial state.</description><subject>Failure</subject><subject>Fatigue crack</subject><subject>Fracture</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Heat resistant steels</subject><subject>Hydrogen embrittlement</subject><subject>Hydrogenation</subject><subject>Multilevel</subject><subject>Steels</subject><subject>Strain</subject><subject>Strain localisation</subject><subject>Thermomechanical loading</subject><issn>0167-8442</issn><issn>1872-7638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9rGzEQxUVJoM6fb9CDjr2sK2nk1e4lUEybBgy5-C7G0iiWu951JLngb1-523MLD2YOv3kz8xj7JMVSCtl-OSwLhiO5pRISlqJKmA9sITujGtNCd8MWFTNNp7X6yO5yPgghjexhwXbrhO4nL_HEc0kYRz5MDoeYscRp5FXVd49jdJlPgYdKl3Oia78nLDxRjrngWOo40cAxFEp8f_FpeqPxj8kDuw04ZHr8W-_Z9vu37fpHs3l9fll_3TROKygN7gRoQKnbrtc9SPQEfkcQRAcUWiFRkTKoV8Hrlfew863SvgfRr5zoDdyzz7PtKU3vZ8rFHmN2NAw40nTOVhojAFayLvsvCka1WpkOKqpn1KUp50TBnlI8YrpYKew1fHuwc_j2Gr4VVeJ6zNM8RvXhX5GSzS7S6MjHRK5YP8V_G_wG-ROP9g</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Yasniy, P.V.</creator><creator>Okipnyi, I.B.</creator><creator>Maruschak, P.O.</creator><creator>Panin, S.V.</creator><creator>Konovalenko, I.V.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20130201</creationdate><title>Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation</title><author>Yasniy, P.V. ; Okipnyi, I.B. ; Maruschak, P.O. ; Panin, S.V. ; Konovalenko, I.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-ab0343a146894931ade3dbe3f083ef601a2e27a45fd45dd3bd624d93095c0973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Failure</topic><topic>Fatigue crack</topic><topic>Fracture</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Heat resistant steels</topic><topic>Hydrogen embrittlement</topic><topic>Hydrogenation</topic><topic>Multilevel</topic><topic>Steels</topic><topic>Strain</topic><topic>Strain localisation</topic><topic>Thermomechanical loading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yasniy, P.V.</creatorcontrib><creatorcontrib>Okipnyi, I.B.</creatorcontrib><creatorcontrib>Maruschak, P.O.</creatorcontrib><creatorcontrib>Panin, S.V.</creatorcontrib><creatorcontrib>Konovalenko, I.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Theoretical and applied fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yasniy, P.V.</au><au>Okipnyi, I.B.</au><au>Maruschak, P.O.</au><au>Panin, S.V.</au><au>Konovalenko, I.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation</atitle><jtitle>Theoretical and applied fracture mechanics</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>63-64</volume><spage>63</spage><epage>68</epage><pages>63-68</pages><issn>0167-8442</issn><eissn>1872-7638</eissn><abstract>The fracture toughness of steel 15Kh2MFA(ІІ) after the PTL was investigated. It was established that the crack start is a multilevel process, in which the defining role is played by the turning modes of deformation. Regardless of the PTL modes in air and in the aggressive medium (electrolytic hydrogen), the resistance to brittle failure of the steel investigated increases as compared to static fracture toughness of the material in the initial state.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.tafmec.2013.03.007</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8442 |
ispartof | Theoretical and applied fracture mechanics, 2013-02, Vol.63-64, p.63-68 |
issn | 0167-8442 1872-7638 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770335142 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Failure Fatigue crack Fracture Fracture mechanics Fracture toughness Heat resistant steels Hydrogen embrittlement Hydrogenation Multilevel Steels Strain Strain localisation Thermomechanical loading |
title | Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crack%20tip%20strain%20localisation%20on%20mechanics%20of%20fracture%20of%20heat%20resistant%20steel%20after%20hydrogenation&rft.jtitle=Theoretical%20and%20applied%20fracture%20mechanics&rft.au=Yasniy,%20P.V.&rft.date=2013-02-01&rft.volume=63-64&rft.spage=63&rft.epage=68&rft.pages=63-68&rft.issn=0167-8442&rft.eissn=1872-7638&rft_id=info:doi/10.1016/j.tafmec.2013.03.007&rft_dat=%3Cproquest_cross%3E1770335142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372642783&rft_id=info:pmid/&rft_els_id=S0167844213000384&rfr_iscdi=true |