Direct Plasmon-Driven Photoelectrocatalysis

Harnessing the energy from hot charge carriers is an emerging research area with the potential to improve energy conversion technologies. − Here we present a novel plasmonic photoelectrode architecture carefully designed to drive photocatalytic reactions by efficient, nonradiative plasmon decay into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2015-09, Vol.15 (9), p.6155-6161
Hauptverfasser: Robatjazi, Hossein, Bahauddin, Shah Mohammad, Doiron, Chloe, Thomann, Isabell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6161
container_issue 9
container_start_page 6155
container_title Nano letters
container_volume 15
creator Robatjazi, Hossein
Bahauddin, Shah Mohammad
Doiron, Chloe
Thomann, Isabell
description Harnessing the energy from hot charge carriers is an emerging research area with the potential to improve energy conversion technologies. − Here we present a novel plasmonic photoelectrode architecture carefully designed to drive photocatalytic reactions by efficient, nonradiative plasmon decay into hot carriers. In contrast to past work, our architecture does not utilize a Schottky junction, the commonly used building block to collect hot carriers. Instead, we observed large photocurrents from a Schottky-free junction due to direct hot electron injection from plasmonic gold nanoparticles into the reactant species upon plasmon decay. The key ingredients of our approach are (i) an architecture for increased light absorption inspired by optical impedance matching concepts, (ii) carrier separation by a selective transport layer, and (iii) efficient hot-carrier generation and injection from small plasmonic Au nanoparticles to adsorbed water molecules. We also investigated the quantum efficiency of hot electron injection for different particle diameters to elucidate potential quantum effects while keeping the plasmon resonance frequency unchanged. Interestingly, our studies did not reveal differences in the hot-electron generation and injection efficiencies for the investigated particle dimensions and plasmon resonances.
doi_str_mv 10.1021/acs.nanolett.5b02453
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770333029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770333029</sourcerecordid><originalsourceid>FETCH-LOGICAL-a427t-27ad420bab64ef257abf128713c7066bdacaa4a90cbb10d1d8b899ed6c388e3c3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRrFb_gUiPgqTOfiS7e5TWLyjYg57D7GaDKUm27iZC_70p_TiKpxmY530HHkJuKEwpMPqANk5bbH3tum6aGmAi5SfkgqYckkxrdnrclRiRyxhXAKB5CudkxDImOOVwQe7nVXC2myxrjI1vk3moflw7WX75zrt6uARvscN6E6t4Rc5KrKO73s8x-Xx--pi9Jov3l7fZ4yJBwWSXMImFYGDQZMKVLJVoSsqUpNxKyDJToEUUqMEaQ6GghTJKa1dklivluOVjcrfrXQf_3bvY5U0VratrbJ3vY06lBM45MP0PlIJWqVJyQMUOtcHHGFyZr0PVYNjkFPKt0Xwwmh-M5nujQ-x2_6E3jSuOoYPCAYAdsI2vfB_awc3fnb9X7oVb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710985887</pqid></control><display><type>article</type><title>Direct Plasmon-Driven Photoelectrocatalysis</title><source>ACS Publications</source><creator>Robatjazi, Hossein ; Bahauddin, Shah Mohammad ; Doiron, Chloe ; Thomann, Isabell</creator><creatorcontrib>Robatjazi, Hossein ; Bahauddin, Shah Mohammad ; Doiron, Chloe ; Thomann, Isabell</creatorcontrib><description>Harnessing the energy from hot charge carriers is an emerging research area with the potential to improve energy conversion technologies. − Here we present a novel plasmonic photoelectrode architecture carefully designed to drive photocatalytic reactions by efficient, nonradiative plasmon decay into hot carriers. In contrast to past work, our architecture does not utilize a Schottky junction, the commonly used building block to collect hot carriers. Instead, we observed large photocurrents from a Schottky-free junction due to direct hot electron injection from plasmonic gold nanoparticles into the reactant species upon plasmon decay. The key ingredients of our approach are (i) an architecture for increased light absorption inspired by optical impedance matching concepts, (ii) carrier separation by a selective transport layer, and (iii) efficient hot-carrier generation and injection from small plasmonic Au nanoparticles to adsorbed water molecules. We also investigated the quantum efficiency of hot electron injection for different particle diameters to elucidate potential quantum effects while keeping the plasmon resonance frequency unchanged. Interestingly, our studies did not reveal differences in the hot-electron generation and injection efficiencies for the investigated particle dimensions and plasmon resonances.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b02453</identifier><identifier>PMID: 26243130</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Architecture ; Carriers ; Direct power generation ; Gold ; Hot electrons ; Plasmonics ; Plasmons ; Quantum efficiency</subject><ispartof>Nano letters, 2015-09, Vol.15 (9), p.6155-6161</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a427t-27ad420bab64ef257abf128713c7066bdacaa4a90cbb10d1d8b899ed6c388e3c3</citedby><cites>FETCH-LOGICAL-a427t-27ad420bab64ef257abf128713c7066bdacaa4a90cbb10d1d8b899ed6c388e3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b02453$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b02453$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26243130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robatjazi, Hossein</creatorcontrib><creatorcontrib>Bahauddin, Shah Mohammad</creatorcontrib><creatorcontrib>Doiron, Chloe</creatorcontrib><creatorcontrib>Thomann, Isabell</creatorcontrib><title>Direct Plasmon-Driven Photoelectrocatalysis</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Harnessing the energy from hot charge carriers is an emerging research area with the potential to improve energy conversion technologies. − Here we present a novel plasmonic photoelectrode architecture carefully designed to drive photocatalytic reactions by efficient, nonradiative plasmon decay into hot carriers. In contrast to past work, our architecture does not utilize a Schottky junction, the commonly used building block to collect hot carriers. Instead, we observed large photocurrents from a Schottky-free junction due to direct hot electron injection from plasmonic gold nanoparticles into the reactant species upon plasmon decay. The key ingredients of our approach are (i) an architecture for increased light absorption inspired by optical impedance matching concepts, (ii) carrier separation by a selective transport layer, and (iii) efficient hot-carrier generation and injection from small plasmonic Au nanoparticles to adsorbed water molecules. We also investigated the quantum efficiency of hot electron injection for different particle diameters to elucidate potential quantum effects while keeping the plasmon resonance frequency unchanged. Interestingly, our studies did not reveal differences in the hot-electron generation and injection efficiencies for the investigated particle dimensions and plasmon resonances.</description><subject>Architecture</subject><subject>Carriers</subject><subject>Direct power generation</subject><subject>Gold</subject><subject>Hot electrons</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Quantum efficiency</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRrFb_gUiPgqTOfiS7e5TWLyjYg57D7GaDKUm27iZC_70p_TiKpxmY530HHkJuKEwpMPqANk5bbH3tum6aGmAi5SfkgqYckkxrdnrclRiRyxhXAKB5CudkxDImOOVwQe7nVXC2myxrjI1vk3moflw7WX75zrt6uARvscN6E6t4Rc5KrKO73s8x-Xx--pi9Jov3l7fZ4yJBwWSXMImFYGDQZMKVLJVoSsqUpNxKyDJToEUUqMEaQ6GghTJKa1dklivluOVjcrfrXQf_3bvY5U0VratrbJ3vY06lBM45MP0PlIJWqVJyQMUOtcHHGFyZr0PVYNjkFPKt0Xwwmh-M5nujQ-x2_6E3jSuOoYPCAYAdsI2vfB_awc3fnb9X7oVb</recordid><startdate>20150909</startdate><enddate>20150909</enddate><creator>Robatjazi, Hossein</creator><creator>Bahauddin, Shah Mohammad</creator><creator>Doiron, Chloe</creator><creator>Thomann, Isabell</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150909</creationdate><title>Direct Plasmon-Driven Photoelectrocatalysis</title><author>Robatjazi, Hossein ; Bahauddin, Shah Mohammad ; Doiron, Chloe ; Thomann, Isabell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a427t-27ad420bab64ef257abf128713c7066bdacaa4a90cbb10d1d8b899ed6c388e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Architecture</topic><topic>Carriers</topic><topic>Direct power generation</topic><topic>Gold</topic><topic>Hot electrons</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Quantum efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robatjazi, Hossein</creatorcontrib><creatorcontrib>Bahauddin, Shah Mohammad</creatorcontrib><creatorcontrib>Doiron, Chloe</creatorcontrib><creatorcontrib>Thomann, Isabell</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robatjazi, Hossein</au><au>Bahauddin, Shah Mohammad</au><au>Doiron, Chloe</au><au>Thomann, Isabell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Plasmon-Driven Photoelectrocatalysis</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-09-09</date><risdate>2015</risdate><volume>15</volume><issue>9</issue><spage>6155</spage><epage>6161</epage><pages>6155-6161</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Harnessing the energy from hot charge carriers is an emerging research area with the potential to improve energy conversion technologies. − Here we present a novel plasmonic photoelectrode architecture carefully designed to drive photocatalytic reactions by efficient, nonradiative plasmon decay into hot carriers. In contrast to past work, our architecture does not utilize a Schottky junction, the commonly used building block to collect hot carriers. Instead, we observed large photocurrents from a Schottky-free junction due to direct hot electron injection from plasmonic gold nanoparticles into the reactant species upon plasmon decay. The key ingredients of our approach are (i) an architecture for increased light absorption inspired by optical impedance matching concepts, (ii) carrier separation by a selective transport layer, and (iii) efficient hot-carrier generation and injection from small plasmonic Au nanoparticles to adsorbed water molecules. We also investigated the quantum efficiency of hot electron injection for different particle diameters to elucidate potential quantum effects while keeping the plasmon resonance frequency unchanged. Interestingly, our studies did not reveal differences in the hot-electron generation and injection efficiencies for the investigated particle dimensions and plasmon resonances.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26243130</pmid><doi>10.1021/acs.nanolett.5b02453</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2015-09, Vol.15 (9), p.6155-6161
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1770333029
source ACS Publications
subjects Architecture
Carriers
Direct power generation
Gold
Hot electrons
Plasmonics
Plasmons
Quantum efficiency
title Direct Plasmon-Driven Photoelectrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T17%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Plasmon-Driven%20Photoelectrocatalysis&rft.jtitle=Nano%20letters&rft.au=Robatjazi,%20Hossein&rft.date=2015-09-09&rft.volume=15&rft.issue=9&rft.spage=6155&rft.epage=6161&rft.pages=6155-6161&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b02453&rft_dat=%3Cproquest_cross%3E1770333029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710985887&rft_id=info:pmid/26243130&rfr_iscdi=true