Quantitative Modeling for Corrosion Behavior in Complex Coupled Environment by Response Surface Methodology
Response surface methodology(RSM) is introduced into corrosion research as a tool to assess the effects of environmental factors and their interactions on corrosion behavior and establish a model for corrosion prediction in complex coupled environment(CCE). In this study, a typical CCE, that is, the...
Gespeichert in:
Veröffentlicht in: | Acta metallurgica sinica : English letters 2015-08, Vol.28 (8), p.994-1001 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1001 |
---|---|
container_issue | 8 |
container_start_page | 994 |
container_title | Acta metallurgica sinica : English letters |
container_volume | 28 |
creator | Liu, Jing Zhang, Tao Zhang, Wei Yang, Yan-Ge Shao, Ya-Wei Meng, Guo-Zhe Wang, Fu-Hui |
description | Response surface methodology(RSM) is introduced into corrosion research as a tool to assess the effects of environmental factors and their interactions on corrosion behavior and establish a model for corrosion prediction in complex coupled environment(CCE). In this study, a typical CCE, that is, the corrosion environment of pipelines in gas field is taken as an example. The effects of environmental factors such as chloride concentration, pH value and pressure as well as their interactions on critical pitting temperature(CPT) were evaluated, and a quadratic polynomial model was developed for corrosion prediction by RSM. The results showed that the model was excellent in corrosion prediction with R2= 0.9949. CPT was mostly affected by single environmental factor rather than interaction, and among the whole factors, chloride concentration was the most influential factor of CPT. |
doi_str_mv | 10.1007/s40195-015-0286-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770329838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665858590</cqvip_id><sourcerecordid>2932984628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-485ad88f6b96a0f4b4ae67fa2dfcdf8c1bcac57d92430fa1716f3b3dabaa3b8f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wN2gGzejeczksdRSH1ARX-uQmUna1GnSJjPF_ntTKgouJIRDLt85NxwAThG8RBCyq1hAJMoconQxp7nYAwOMRJEjzMU-GCSI5gwJdAiOYpynFy5KNgAfz71yne1UZ9c6e_SNbq2bZsaHbORD8NF6l93omVrbNLIuTRfLVn8m7ZM22ditbfBuoV2XVZvsRceld1Fnr30wqk6Rupv5xrd-ujkGB0a1UZ986xC8347fRvf55OnuYXQ9yWvCaJcXvFQN54ZWgipoiqpQmjKjcGPqxvAaVbWqS9YIXBBoFGKIGlKRRlVKkYobMgQXu9xl8Ktex04ubKx12yqnfR8lYgwSLDjhCT3_g859H1z6ncRiyxQUbym0o-pUSAzayGWwCxU2EkG5rV_u6pepfrmtX4rkwTtPTKyb6vCb_J_p7HvRzLvpKvl-NlFa8nQEJF_jX5XO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932984628</pqid></control><display><type>article</type><title>Quantitative Modeling for Corrosion Behavior in Complex Coupled Environment by Response Surface Methodology</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Liu, Jing ; Zhang, Tao ; Zhang, Wei ; Yang, Yan-Ge ; Shao, Ya-Wei ; Meng, Guo-Zhe ; Wang, Fu-Hui</creator><creatorcontrib>Liu, Jing ; Zhang, Tao ; Zhang, Wei ; Yang, Yan-Ge ; Shao, Ya-Wei ; Meng, Guo-Zhe ; Wang, Fu-Hui</creatorcontrib><description>Response surface methodology(RSM) is introduced into corrosion research as a tool to assess the effects of environmental factors and their interactions on corrosion behavior and establish a model for corrosion prediction in complex coupled environment(CCE). In this study, a typical CCE, that is, the corrosion environment of pipelines in gas field is taken as an example. The effects of environmental factors such as chloride concentration, pH value and pressure as well as their interactions on critical pitting temperature(CPT) were evaluated, and a quadratic polynomial model was developed for corrosion prediction by RSM. The results showed that the model was excellent in corrosion prediction with R2= 0.9949. CPT was mostly affected by single environmental factor rather than interaction, and among the whole factors, chloride concentration was the most influential factor of CPT.</description><identifier>ISSN: 1006-7191</identifier><identifier>EISSN: 2194-1289</identifier><identifier>DOI: 10.1007/s40195-015-0286-9</identifier><language>eng</language><publisher>Beijing: The Chinese Society for Metals</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chlorides ; Corrosion ; Corrosion and Coatings ; Corrosion effects ; Corrosion environments ; Corrosion tests ; Design of experiments ; Electrodes ; Gas pipelines ; Joining ; Materials Science ; Mathematical models ; Metallic Materials ; Nanotechnology ; Natural gas ; Organometallic Chemistry ; Pitting (corrosion) ; Polynomials ; Regression analysis ; Response surface methodology ; Spectroscopy/Spectrometry ; Temperature ; Tribology ; Variables ; 临界点蚀温度 ; 响应面法 ; 定量建模 ; 氯离子浓度 ; 环境因素 ; 相互作用 ; 耦合 ; 腐蚀行为</subject><ispartof>Acta metallurgica sinica : English letters, 2015-08, Vol.28 (8), p.994-1001</ispartof><rights>The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015</rights><rights>The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-485ad88f6b96a0f4b4ae67fa2dfcdf8c1bcac57d92430fa1716f3b3dabaa3b8f3</citedby><cites>FETCH-LOGICAL-c376t-485ad88f6b96a0f4b4ae67fa2dfcdf8c1bcac57d92430fa1716f3b3dabaa3b8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86672X/86672X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40195-015-0286-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2932984628?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Yan-Ge</creatorcontrib><creatorcontrib>Shao, Ya-Wei</creatorcontrib><creatorcontrib>Meng, Guo-Zhe</creatorcontrib><creatorcontrib>Wang, Fu-Hui</creatorcontrib><title>Quantitative Modeling for Corrosion Behavior in Complex Coupled Environment by Response Surface Methodology</title><title>Acta metallurgica sinica : English letters</title><addtitle>Acta Metall. Sin. (Engl. Lett.)</addtitle><addtitle>Acta Metallurgica Sinica(English Letters)</addtitle><description>Response surface methodology(RSM) is introduced into corrosion research as a tool to assess the effects of environmental factors and their interactions on corrosion behavior and establish a model for corrosion prediction in complex coupled environment(CCE). In this study, a typical CCE, that is, the corrosion environment of pipelines in gas field is taken as an example. The effects of environmental factors such as chloride concentration, pH value and pressure as well as their interactions on critical pitting temperature(CPT) were evaluated, and a quadratic polynomial model was developed for corrosion prediction by RSM. The results showed that the model was excellent in corrosion prediction with R2= 0.9949. CPT was mostly affected by single environmental factor rather than interaction, and among the whole factors, chloride concentration was the most influential factor of CPT.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chlorides</subject><subject>Corrosion</subject><subject>Corrosion and Coatings</subject><subject>Corrosion effects</subject><subject>Corrosion environments</subject><subject>Corrosion tests</subject><subject>Design of experiments</subject><subject>Electrodes</subject><subject>Gas pipelines</subject><subject>Joining</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Natural gas</subject><subject>Organometallic Chemistry</subject><subject>Pitting (corrosion)</subject><subject>Polynomials</subject><subject>Regression analysis</subject><subject>Response surface methodology</subject><subject>Spectroscopy/Spectrometry</subject><subject>Temperature</subject><subject>Tribology</subject><subject>Variables</subject><subject>临界点蚀温度</subject><subject>响应面法</subject><subject>定量建模</subject><subject>氯离子浓度</subject><subject>环境因素</subject><subject>相互作用</subject><subject>耦合</subject><subject>腐蚀行为</subject><issn>1006-7191</issn><issn>2194-1289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_wN2gGzejeczksdRSH1ARX-uQmUna1GnSJjPF_ntTKgouJIRDLt85NxwAThG8RBCyq1hAJMoconQxp7nYAwOMRJEjzMU-GCSI5gwJdAiOYpynFy5KNgAfz71yne1UZ9c6e_SNbq2bZsaHbORD8NF6l93omVrbNLIuTRfLVn8m7ZM22ditbfBuoV2XVZvsRceld1Fnr30wqk6Rupv5xrd-ujkGB0a1UZ986xC8347fRvf55OnuYXQ9yWvCaJcXvFQN54ZWgipoiqpQmjKjcGPqxvAaVbWqS9YIXBBoFGKIGlKRRlVKkYobMgQXu9xl8Ktex04ubKx12yqnfR8lYgwSLDjhCT3_g859H1z6ncRiyxQUbym0o-pUSAzayGWwCxU2EkG5rV_u6pepfrmtX4rkwTtPTKyb6vCb_J_p7HvRzLvpKvl-NlFa8nQEJF_jX5XO</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Liu, Jing</creator><creator>Zhang, Tao</creator><creator>Zhang, Wei</creator><creator>Yang, Yan-Ge</creator><creator>Shao, Ya-Wei</creator><creator>Meng, Guo-Zhe</creator><creator>Wang, Fu-Hui</creator><general>The Chinese Society for Metals</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150801</creationdate><title>Quantitative Modeling for Corrosion Behavior in Complex Coupled Environment by Response Surface Methodology</title><author>Liu, Jing ; Zhang, Tao ; Zhang, Wei ; Yang, Yan-Ge ; Shao, Ya-Wei ; Meng, Guo-Zhe ; Wang, Fu-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-485ad88f6b96a0f4b4ae67fa2dfcdf8c1bcac57d92430fa1716f3b3dabaa3b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chlorides</topic><topic>Corrosion</topic><topic>Corrosion and Coatings</topic><topic>Corrosion effects</topic><topic>Corrosion environments</topic><topic>Corrosion tests</topic><topic>Design of experiments</topic><topic>Electrodes</topic><topic>Gas pipelines</topic><topic>Joining</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Natural gas</topic><topic>Organometallic Chemistry</topic><topic>Pitting (corrosion)</topic><topic>Polynomials</topic><topic>Regression analysis</topic><topic>Response surface methodology</topic><topic>Spectroscopy/Spectrometry</topic><topic>Temperature</topic><topic>Tribology</topic><topic>Variables</topic><topic>临界点蚀温度</topic><topic>响应面法</topic><topic>定量建模</topic><topic>氯离子浓度</topic><topic>环境因素</topic><topic>相互作用</topic><topic>耦合</topic><topic>腐蚀行为</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Yan-Ge</creatorcontrib><creatorcontrib>Shao, Ya-Wei</creatorcontrib><creatorcontrib>Meng, Guo-Zhe</creatorcontrib><creatorcontrib>Wang, Fu-Hui</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta metallurgica sinica : English letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jing</au><au>Zhang, Tao</au><au>Zhang, Wei</au><au>Yang, Yan-Ge</au><au>Shao, Ya-Wei</au><au>Meng, Guo-Zhe</au><au>Wang, Fu-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Modeling for Corrosion Behavior in Complex Coupled Environment by Response Surface Methodology</atitle><jtitle>Acta metallurgica sinica : English letters</jtitle><stitle>Acta Metall. Sin. (Engl. Lett.)</stitle><addtitle>Acta Metallurgica Sinica(English Letters)</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>28</volume><issue>8</issue><spage>994</spage><epage>1001</epage><pages>994-1001</pages><issn>1006-7191</issn><eissn>2194-1289</eissn><abstract>Response surface methodology(RSM) is introduced into corrosion research as a tool to assess the effects of environmental factors and their interactions on corrosion behavior and establish a model for corrosion prediction in complex coupled environment(CCE). In this study, a typical CCE, that is, the corrosion environment of pipelines in gas field is taken as an example. The effects of environmental factors such as chloride concentration, pH value and pressure as well as their interactions on critical pitting temperature(CPT) were evaluated, and a quadratic polynomial model was developed for corrosion prediction by RSM. The results showed that the model was excellent in corrosion prediction with R2= 0.9949. CPT was mostly affected by single environmental factor rather than interaction, and among the whole factors, chloride concentration was the most influential factor of CPT.</abstract><cop>Beijing</cop><pub>The Chinese Society for Metals</pub><doi>10.1007/s40195-015-0286-9</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-7191 |
ispartof | Acta metallurgica sinica : English letters, 2015-08, Vol.28 (8), p.994-1001 |
issn | 1006-7191 2194-1289 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770329838 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Chlorides Corrosion Corrosion and Coatings Corrosion effects Corrosion environments Corrosion tests Design of experiments Electrodes Gas pipelines Joining Materials Science Mathematical models Metallic Materials Nanotechnology Natural gas Organometallic Chemistry Pitting (corrosion) Polynomials Regression analysis Response surface methodology Spectroscopy/Spectrometry Temperature Tribology Variables 临界点蚀温度 响应面法 定量建模 氯离子浓度 环境因素 相互作用 耦合 腐蚀行为 |
title | Quantitative Modeling for Corrosion Behavior in Complex Coupled Environment by Response Surface Methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Modeling%20for%20Corrosion%20Behavior%20in%20Complex%20Coupled%20Environment%20by%20Response%20Surface%20Methodology&rft.jtitle=Acta%20metallurgica%20sinica%20:%20English%20letters&rft.au=Liu,%20Jing&rft.date=2015-08-01&rft.volume=28&rft.issue=8&rft.spage=994&rft.epage=1001&rft.pages=994-1001&rft.issn=1006-7191&rft.eissn=2194-1289&rft_id=info:doi/10.1007/s40195-015-0286-9&rft_dat=%3Cproquest_cross%3E2932984628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932984628&rft_id=info:pmid/&rft_cqvip_id=665858590&rfr_iscdi=true |