How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure
Toxicity of pesticides towards microorganisms can have a major impact on ecosystem function. Nevertheless, some microorganisms are able to respond quickly to this stress by degrading these molecules. The edaphic Bacillus megaterium strain Mes11 can degrade the herbicide mesotrione. In order to gain...
Gespeichert in:
Veröffentlicht in: | Environmental pollution 2015-04, Vol.199, p.198-208 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | |
container_start_page | 198 |
container_title | Environmental pollution |
container_volume | 199 |
creator | Bardot, Corinne Besse-Hoggan, Pascale Carles, Louis Le Gall, Morgane Clary, Guilhem Chafey, Philippe Federici, Christian Broussard, Cédric Batisson, Isabelle |
description | Toxicity of pesticides towards microorganisms can have a major impact on ecosystem function. Nevertheless, some microorganisms are able to respond quickly to this stress by degrading these molecules. The edaphic Bacillus megaterium strain Mes11 can degrade the herbicide mesotrione. In order to gain insight into the cellular response involved, the intracellular proteome of Mes11 exposed to mesotrione was analyzed using the two-dimensional differential in-gel electrophoresis (2D-DIGE) approach coupled with mass spectrometry. The results showed an average of 1820 protein spots being detected. The gel profile analyses revealed 32 protein spots whose abundance is modified after treatment with mesotrione. Twenty spots could be identified, leading to 17 non redundant proteins, mainly involved in stress, metabolic and storage mechanisms. These findings clarify the pathways used by B. megaterium strain Mes11 to resist and adapt to the presence of mesotrione.
•Bacillus megaterium strain Mes11 is able to degrade the herbicide mesotrione.•The response to mesotrione stress was studied by a differential proteomic approach.•Adaptation to mesotrione involves stress, central metabolism and storage proteins.•Some identified proteins could be directly involved in mesotrione degradation.
Metabolism adaptation of the mesotrione-degrading Bacillus megaterium to the mesotrione herbicide stress. |
doi_str_mv | 10.1016/j.envpol.2015.01.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770325946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0269749115000482</els_id><sourcerecordid>1727679068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-a3333b91bc496cd1fbf44a1a0d8daaf62a749b74ed5a9391196ff510d25bffa33</originalsourceid><addsrcrecordid>eNqNkUGP0zAQhS0EYsvCP0DIRzgkeBzHqS9IywooUhEXOFuOPaEuSR1sp4h_j0uWPSJOI3m-N_M8j5DnwGpgIF8fazyd5zDWnEFbM6gZVw_IBrZdU0nBxUOyYVyqqhMKrsiTlI6MMdE0zWNyxVvZKbWFDfm-Cz9pPiBFZ-aDt_StsX4cl0Qn_GYyRr9MNOVo_Il-wgRATQFzoj5fkGz6MPo00Rz-TDlg7L31DksvhRx9OCGdI6a0RHxKHg1mTPjsrl6Tr-_ffbndVfvPHz7e3uwrKyTPlSkem15Bb4WS1sHQD0IYMMxtnTGD5KZ8qe8EutaoRgEoOQwtMMfbfhiK-pq8WucezKjn6CcTf-lgvN7d7PXljQEHwdr2DIV9ubJzDD8WTFlPPlkcR3PCsCQNXcca3ioh_wPlXTkrk9uCihW1MaQUcbi3AUxf0tNHvaanL-kVQ7qkV2Qv7jYs_YTuXvQ3rgK8WQEs5zt7jDpZjyeLzke0Wbvg_73hN17bras</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727679068</pqid></control><display><type>article</type><title>How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bardot, Corinne ; Besse-Hoggan, Pascale ; Carles, Louis ; Le Gall, Morgane ; Clary, Guilhem ; Chafey, Philippe ; Federici, Christian ; Broussard, Cédric ; Batisson, Isabelle</creator><creatorcontrib>Bardot, Corinne ; Besse-Hoggan, Pascale ; Carles, Louis ; Le Gall, Morgane ; Clary, Guilhem ; Chafey, Philippe ; Federici, Christian ; Broussard, Cédric ; Batisson, Isabelle</creatorcontrib><description>Toxicity of pesticides towards microorganisms can have a major impact on ecosystem function. Nevertheless, some microorganisms are able to respond quickly to this stress by degrading these molecules. The edaphic Bacillus megaterium strain Mes11 can degrade the herbicide mesotrione. In order to gain insight into the cellular response involved, the intracellular proteome of Mes11 exposed to mesotrione was analyzed using the two-dimensional differential in-gel electrophoresis (2D-DIGE) approach coupled with mass spectrometry. The results showed an average of 1820 protein spots being detected. The gel profile analyses revealed 32 protein spots whose abundance is modified after treatment with mesotrione. Twenty spots could be identified, leading to 17 non redundant proteins, mainly involved in stress, metabolic and storage mechanisms. These findings clarify the pathways used by B. megaterium strain Mes11 to resist and adapt to the presence of mesotrione.
•Bacillus megaterium strain Mes11 is able to degrade the herbicide mesotrione.•The response to mesotrione stress was studied by a differential proteomic approach.•Adaptation to mesotrione involves stress, central metabolism and storage proteins.•Some identified proteins could be directly involved in mesotrione degradation.
Metabolism adaptation of the mesotrione-degrading Bacillus megaterium to the mesotrione herbicide stress.</description><identifier>ISSN: 0269-7491</identifier><identifier>ISSN: 0013-9327</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/j.envpol.2015.01.029</identifier><identifier>PMID: 25679981</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>2D-DIGE ; Adaptation, Physiological ; Bacillus megaterium ; Bacillus megaterium - metabolism ; Bacillus megaterium - physiology ; Cyclohexanones - metabolism ; Cyclohexanones - toxicity ; Degradation ; Differential proteomic ; Drug Resistance, Bacterial - physiology ; Environmental Sciences ; Herbicides ; Herbicides - metabolism ; Herbicides - toxicity ; Microorganisms ; Pesticides ; Physiological responses ; Proteins ; Proteome - metabolism ; Soil bacteria ; Spots ; Strain ; Stresses</subject><ispartof>Environmental pollution, 2015-04, Vol.199, p.198-208</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-a3333b91bc496cd1fbf44a1a0d8daaf62a749b74ed5a9391196ff510d25bffa33</citedby><cites>FETCH-LOGICAL-c462t-a3333b91bc496cd1fbf44a1a0d8daaf62a749b74ed5a9391196ff510d25bffa33</cites><orcidid>0000-0003-3006-0410 ; 0000-0001-6576-0279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0269749115000482$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25679981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01214055$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bardot, Corinne</creatorcontrib><creatorcontrib>Besse-Hoggan, Pascale</creatorcontrib><creatorcontrib>Carles, Louis</creatorcontrib><creatorcontrib>Le Gall, Morgane</creatorcontrib><creatorcontrib>Clary, Guilhem</creatorcontrib><creatorcontrib>Chafey, Philippe</creatorcontrib><creatorcontrib>Federici, Christian</creatorcontrib><creatorcontrib>Broussard, Cédric</creatorcontrib><creatorcontrib>Batisson, Isabelle</creatorcontrib><title>How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure</title><title>Environmental pollution</title><addtitle>Environ Pollut</addtitle><description>Toxicity of pesticides towards microorganisms can have a major impact on ecosystem function. Nevertheless, some microorganisms are able to respond quickly to this stress by degrading these molecules. The edaphic Bacillus megaterium strain Mes11 can degrade the herbicide mesotrione. In order to gain insight into the cellular response involved, the intracellular proteome of Mes11 exposed to mesotrione was analyzed using the two-dimensional differential in-gel electrophoresis (2D-DIGE) approach coupled with mass spectrometry. The results showed an average of 1820 protein spots being detected. The gel profile analyses revealed 32 protein spots whose abundance is modified after treatment with mesotrione. Twenty spots could be identified, leading to 17 non redundant proteins, mainly involved in stress, metabolic and storage mechanisms. These findings clarify the pathways used by B. megaterium strain Mes11 to resist and adapt to the presence of mesotrione.
•Bacillus megaterium strain Mes11 is able to degrade the herbicide mesotrione.•The response to mesotrione stress was studied by a differential proteomic approach.•Adaptation to mesotrione involves stress, central metabolism and storage proteins.•Some identified proteins could be directly involved in mesotrione degradation.
Metabolism adaptation of the mesotrione-degrading Bacillus megaterium to the mesotrione herbicide stress.</description><subject>2D-DIGE</subject><subject>Adaptation, Physiological</subject><subject>Bacillus megaterium</subject><subject>Bacillus megaterium - metabolism</subject><subject>Bacillus megaterium - physiology</subject><subject>Cyclohexanones - metabolism</subject><subject>Cyclohexanones - toxicity</subject><subject>Degradation</subject><subject>Differential proteomic</subject><subject>Drug Resistance, Bacterial - physiology</subject><subject>Environmental Sciences</subject><subject>Herbicides</subject><subject>Herbicides - metabolism</subject><subject>Herbicides - toxicity</subject><subject>Microorganisms</subject><subject>Pesticides</subject><subject>Physiological responses</subject><subject>Proteins</subject><subject>Proteome - metabolism</subject><subject>Soil bacteria</subject><subject>Spots</subject><subject>Strain</subject><subject>Stresses</subject><issn>0269-7491</issn><issn>0013-9327</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUGP0zAQhS0EYsvCP0DIRzgkeBzHqS9IywooUhEXOFuOPaEuSR1sp4h_j0uWPSJOI3m-N_M8j5DnwGpgIF8fazyd5zDWnEFbM6gZVw_IBrZdU0nBxUOyYVyqqhMKrsiTlI6MMdE0zWNyxVvZKbWFDfm-Cz9pPiBFZ-aDt_StsX4cl0Qn_GYyRr9MNOVo_Il-wgRATQFzoj5fkGz6MPo00Rz-TDlg7L31DksvhRx9OCGdI6a0RHxKHg1mTPjsrl6Tr-_ffbndVfvPHz7e3uwrKyTPlSkem15Bb4WS1sHQD0IYMMxtnTGD5KZ8qe8EutaoRgEoOQwtMMfbfhiK-pq8WucezKjn6CcTf-lgvN7d7PXljQEHwdr2DIV9ubJzDD8WTFlPPlkcR3PCsCQNXcca3ioh_wPlXTkrk9uCihW1MaQUcbi3AUxf0tNHvaanL-kVQ7qkV2Qv7jYs_YTuXvQ3rgK8WQEs5zt7jDpZjyeLzke0Wbvg_73hN17bras</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Bardot, Corinne</creator><creator>Besse-Hoggan, Pascale</creator><creator>Carles, Louis</creator><creator>Le Gall, Morgane</creator><creator>Clary, Guilhem</creator><creator>Chafey, Philippe</creator><creator>Federici, Christian</creator><creator>Broussard, Cédric</creator><creator>Batisson, Isabelle</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3006-0410</orcidid><orcidid>https://orcid.org/0000-0001-6576-0279</orcidid></search><sort><creationdate>20150401</creationdate><title>How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure</title><author>Bardot, Corinne ; Besse-Hoggan, Pascale ; Carles, Louis ; Le Gall, Morgane ; Clary, Guilhem ; Chafey, Philippe ; Federici, Christian ; Broussard, Cédric ; Batisson, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-a3333b91bc496cd1fbf44a1a0d8daaf62a749b74ed5a9391196ff510d25bffa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>2D-DIGE</topic><topic>Adaptation, Physiological</topic><topic>Bacillus megaterium</topic><topic>Bacillus megaterium - metabolism</topic><topic>Bacillus megaterium - physiology</topic><topic>Cyclohexanones - metabolism</topic><topic>Cyclohexanones - toxicity</topic><topic>Degradation</topic><topic>Differential proteomic</topic><topic>Drug Resistance, Bacterial - physiology</topic><topic>Environmental Sciences</topic><topic>Herbicides</topic><topic>Herbicides - metabolism</topic><topic>Herbicides - toxicity</topic><topic>Microorganisms</topic><topic>Pesticides</topic><topic>Physiological responses</topic><topic>Proteins</topic><topic>Proteome - metabolism</topic><topic>Soil bacteria</topic><topic>Spots</topic><topic>Strain</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardot, Corinne</creatorcontrib><creatorcontrib>Besse-Hoggan, Pascale</creatorcontrib><creatorcontrib>Carles, Louis</creatorcontrib><creatorcontrib>Le Gall, Morgane</creatorcontrib><creatorcontrib>Clary, Guilhem</creatorcontrib><creatorcontrib>Chafey, Philippe</creatorcontrib><creatorcontrib>Federici, Christian</creatorcontrib><creatorcontrib>Broussard, Cédric</creatorcontrib><creatorcontrib>Batisson, Isabelle</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardot, Corinne</au><au>Besse-Hoggan, Pascale</au><au>Carles, Louis</au><au>Le Gall, Morgane</au><au>Clary, Guilhem</au><au>Chafey, Philippe</au><au>Federici, Christian</au><au>Broussard, Cédric</au><au>Batisson, Isabelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure</atitle><jtitle>Environmental pollution</jtitle><addtitle>Environ Pollut</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>199</volume><spage>198</spage><epage>208</epage><pages>198-208</pages><issn>0269-7491</issn><issn>0013-9327</issn><eissn>1873-6424</eissn><abstract>Toxicity of pesticides towards microorganisms can have a major impact on ecosystem function. Nevertheless, some microorganisms are able to respond quickly to this stress by degrading these molecules. The edaphic Bacillus megaterium strain Mes11 can degrade the herbicide mesotrione. In order to gain insight into the cellular response involved, the intracellular proteome of Mes11 exposed to mesotrione was analyzed using the two-dimensional differential in-gel electrophoresis (2D-DIGE) approach coupled with mass spectrometry. The results showed an average of 1820 protein spots being detected. The gel profile analyses revealed 32 protein spots whose abundance is modified after treatment with mesotrione. Twenty spots could be identified, leading to 17 non redundant proteins, mainly involved in stress, metabolic and storage mechanisms. These findings clarify the pathways used by B. megaterium strain Mes11 to resist and adapt to the presence of mesotrione.
•Bacillus megaterium strain Mes11 is able to degrade the herbicide mesotrione.•The response to mesotrione stress was studied by a differential proteomic approach.•Adaptation to mesotrione involves stress, central metabolism and storage proteins.•Some identified proteins could be directly involved in mesotrione degradation.
Metabolism adaptation of the mesotrione-degrading Bacillus megaterium to the mesotrione herbicide stress.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25679981</pmid><doi>10.1016/j.envpol.2015.01.029</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3006-0410</orcidid><orcidid>https://orcid.org/0000-0001-6576-0279</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-7491 |
ispartof | Environmental pollution, 2015-04, Vol.199, p.198-208 |
issn | 0269-7491 0013-9327 1873-6424 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770325946 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | 2D-DIGE Adaptation, Physiological Bacillus megaterium Bacillus megaterium - metabolism Bacillus megaterium - physiology Cyclohexanones - metabolism Cyclohexanones - toxicity Degradation Differential proteomic Drug Resistance, Bacterial - physiology Environmental Sciences Herbicides Herbicides - metabolism Herbicides - toxicity Microorganisms Pesticides Physiological responses Proteins Proteome - metabolism Soil bacteria Spots Strain Stresses |
title | How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20the%20edaphic%20Bacillus%20megaterium%20strain%20Mes11%20adapts%20its%20metabolism%20to%20the%20herbicide%20mesotrione%20pressure&rft.jtitle=Environmental%20pollution&rft.au=Bardot,%20Corinne&rft.date=2015-04-01&rft.volume=199&rft.spage=198&rft.epage=208&rft.pages=198-208&rft.issn=0269-7491&rft.eissn=1873-6424&rft_id=info:doi/10.1016/j.envpol.2015.01.029&rft_dat=%3Cproquest_hal_p%3E1727679068%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1727679068&rft_id=info:pmid/25679981&rft_els_id=S0269749115000482&rfr_iscdi=true |