Electronic and plasmonic phenomena at graphene grain boundaries

Graphene 1 , a two-dimensional honeycomb lattice of carbon atoms of great interest in (opto)electronics 2 , 3 and plasmonics 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , can be obtained by means of diverse fabrication techniques, among which chemical vapour deposition (CVD) is one of the most promising for tec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2013-11, Vol.8 (11), p.821-825
Hauptverfasser: Fei, Z., Rodin, A. S., Gannett, W., Dai, S., Regan, W., Wagner, M., Liu, M. K., McLeod, A. S., Dominguez, G., Thiemens, M., Castro Neto, Antonio H., Keilmann, F., Zettl, A., Hillenbrand, R., Fogler, M. M., Basov, D. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 11
container_start_page 821
container_title Nature nanotechnology
container_volume 8
creator Fei, Z.
Rodin, A. S.
Gannett, W.
Dai, S.
Regan, W.
Wagner, M.
Liu, M. K.
McLeod, A. S.
Dominguez, G.
Thiemens, M.
Castro Neto, Antonio H.
Keilmann, F.
Zettl, A.
Hillenbrand, R.
Fogler, M. M.
Basov, D. N.
description Graphene 1 , a two-dimensional honeycomb lattice of carbon atoms of great interest in (opto)electronics 2 , 3 and plasmonics 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , can be obtained by means of diverse fabrication techniques, among which chemical vapour deposition (CVD) is one of the most promising for technological applications 12 . The electronic and mechanical properties of CVD-grown graphene depend in large part on the characteristics of the grain boundaries 13 , 14 , 15 , 16 , 17 , 18 , 19 . However, the physical properties of these grain boundaries remain challenging to characterize directly and conveniently 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 . Here we show that it is possible to visualize and investigate the grain boundaries in CVD-grown graphene using an infrared nano-imaging technique. We harness surface plasmons that are reflected and scattered by the graphene grain boundaries, thus causing plasmon interference. By recording and analysing the interference patterns, we can map grain boundaries for a large-area CVD graphene film and probe the electronic properties of individual grain boundaries. Quantitative analysis reveals that grain boundaries form electronic barriers that obstruct both electrical transport and plasmon propagation. The effective width of these barriers (∼10–20 nm) depends on the electronic screening and is on the order of the Fermi wavelength of graphene. These results uncover a microscopic mechanism that is responsible for the low electron mobility observed in CVD-grown graphene, and suggest the possibility of using electronic barriers to realize tunable plasmon reflectors and phase retarders in future graphene-based plasmonic circuits. Individual grain boundaries are imaged using a scanning plasmon interferometry technique, revealing mechanistic insights on electronic transport and plasmon propagation in graphene.
doi_str_mv 10.1038/nnano.2013.197
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770325099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770325099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-529102ba0c311679ef693885946ed694cd339ddd091e48ea9371e369b8f0c8b93</originalsourceid><addsrcrecordid>eNqNkctLAzEQh4MotlavHmXBi5e2mSSbx0mk1AcUvOh5ye5O65bdbE26B_9704dFRNBTZsiX30z4CLkEOgLK9dg569oRo8BHYNQR6YMSesi5SY8PtVY9chbCktKUGSZOSY8JYIxq1ie30xqLtW9dVSTWlcmqtqHZdqs3dG2DziZ2nSy83fS4KSqX5G3nSusrDOfkZG7rgBf7c0Be76cvk8fh7PnhaXI3GxbCpOthHAyU5ZYWHEAqg3NpuNapERJLaURRxpXLsqQGUGi0hitALk2u57TQueEDcrPLXfn2vcOwzpoqFFjX1mHbhQyUopyl1PwDTankUmkOf6NCGCWV5Cyi1z_QZdt5F_-8pYBrABGp0Y4qfBuCx3m28lVj_UcGNNsIy7bCso2wLAqLD672sV3eYHnAvwxFYLwDQrxyC_Tf5v4e-QnYD57N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449138114</pqid></control><display><type>article</type><title>Electronic and plasmonic phenomena at graphene grain boundaries</title><source>SpringerLink Journals</source><source>Nature</source><creator>Fei, Z. ; Rodin, A. S. ; Gannett, W. ; Dai, S. ; Regan, W. ; Wagner, M. ; Liu, M. K. ; McLeod, A. S. ; Dominguez, G. ; Thiemens, M. ; Castro Neto, Antonio H. ; Keilmann, F. ; Zettl, A. ; Hillenbrand, R. ; Fogler, M. M. ; Basov, D. N.</creator><creatorcontrib>Fei, Z. ; Rodin, A. S. ; Gannett, W. ; Dai, S. ; Regan, W. ; Wagner, M. ; Liu, M. K. ; McLeod, A. S. ; Dominguez, G. ; Thiemens, M. ; Castro Neto, Antonio H. ; Keilmann, F. ; Zettl, A. ; Hillenbrand, R. ; Fogler, M. M. ; Basov, D. N.</creatorcontrib><description>Graphene 1 , a two-dimensional honeycomb lattice of carbon atoms of great interest in (opto)electronics 2 , 3 and plasmonics 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , can be obtained by means of diverse fabrication techniques, among which chemical vapour deposition (CVD) is one of the most promising for technological applications 12 . The electronic and mechanical properties of CVD-grown graphene depend in large part on the characteristics of the grain boundaries 13 , 14 , 15 , 16 , 17 , 18 , 19 . However, the physical properties of these grain boundaries remain challenging to characterize directly and conveniently 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 . Here we show that it is possible to visualize and investigate the grain boundaries in CVD-grown graphene using an infrared nano-imaging technique. We harness surface plasmons that are reflected and scattered by the graphene grain boundaries, thus causing plasmon interference. By recording and analysing the interference patterns, we can map grain boundaries for a large-area CVD graphene film and probe the electronic properties of individual grain boundaries. Quantitative analysis reveals that grain boundaries form electronic barriers that obstruct both electrical transport and plasmon propagation. The effective width of these barriers (∼10–20 nm) depends on the electronic screening and is on the order of the Fermi wavelength of graphene. These results uncover a microscopic mechanism that is responsible for the low electron mobility observed in CVD-grown graphene, and suggest the possibility of using electronic barriers to realize tunable plasmon reflectors and phase retarders in future graphene-based plasmonic circuits. Individual grain boundaries are imaged using a scanning plasmon interferometry technique, revealing mechanistic insights on electronic transport and plasmon propagation in graphene.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2013.197</identifier><identifier>PMID: 24122082</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/918/1054 ; 639/925/918/1054 ; Barriers ; Boundaries ; Chemical vapor deposition ; Defects ; Electronics ; Fabrication ; Grain boundaries ; Graphene ; Interferometry ; letter ; Materials Science ; Nanostructure ; Nanotechnology ; Nanotechnology and Microengineering ; Physical properties ; Physics ; Plasmonics ; Plasmons ; Topography</subject><ispartof>Nature nanotechnology, 2013-11, Vol.8 (11), p.821-825</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Nov 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-529102ba0c311679ef693885946ed694cd339ddd091e48ea9371e369b8f0c8b93</citedby><cites>FETCH-LOGICAL-c495t-529102ba0c311679ef693885946ed694cd339ddd091e48ea9371e369b8f0c8b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2013.197$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2013.197$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24122082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fei, Z.</creatorcontrib><creatorcontrib>Rodin, A. S.</creatorcontrib><creatorcontrib>Gannett, W.</creatorcontrib><creatorcontrib>Dai, S.</creatorcontrib><creatorcontrib>Regan, W.</creatorcontrib><creatorcontrib>Wagner, M.</creatorcontrib><creatorcontrib>Liu, M. K.</creatorcontrib><creatorcontrib>McLeod, A. S.</creatorcontrib><creatorcontrib>Dominguez, G.</creatorcontrib><creatorcontrib>Thiemens, M.</creatorcontrib><creatorcontrib>Castro Neto, Antonio H.</creatorcontrib><creatorcontrib>Keilmann, F.</creatorcontrib><creatorcontrib>Zettl, A.</creatorcontrib><creatorcontrib>Hillenbrand, R.</creatorcontrib><creatorcontrib>Fogler, M. M.</creatorcontrib><creatorcontrib>Basov, D. N.</creatorcontrib><title>Electronic and plasmonic phenomena at graphene grain boundaries</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Graphene 1 , a two-dimensional honeycomb lattice of carbon atoms of great interest in (opto)electronics 2 , 3 and plasmonics 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , can be obtained by means of diverse fabrication techniques, among which chemical vapour deposition (CVD) is one of the most promising for technological applications 12 . The electronic and mechanical properties of CVD-grown graphene depend in large part on the characteristics of the grain boundaries 13 , 14 , 15 , 16 , 17 , 18 , 19 . However, the physical properties of these grain boundaries remain challenging to characterize directly and conveniently 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 . Here we show that it is possible to visualize and investigate the grain boundaries in CVD-grown graphene using an infrared nano-imaging technique. We harness surface plasmons that are reflected and scattered by the graphene grain boundaries, thus causing plasmon interference. By recording and analysing the interference patterns, we can map grain boundaries for a large-area CVD graphene film and probe the electronic properties of individual grain boundaries. Quantitative analysis reveals that grain boundaries form electronic barriers that obstruct both electrical transport and plasmon propagation. The effective width of these barriers (∼10–20 nm) depends on the electronic screening and is on the order of the Fermi wavelength of graphene. These results uncover a microscopic mechanism that is responsible for the low electron mobility observed in CVD-grown graphene, and suggest the possibility of using electronic barriers to realize tunable plasmon reflectors and phase retarders in future graphene-based plasmonic circuits. Individual grain boundaries are imaged using a scanning plasmon interferometry technique, revealing mechanistic insights on electronic transport and plasmon propagation in graphene.</description><subject>639/301/357/918/1054</subject><subject>639/925/918/1054</subject><subject>Barriers</subject><subject>Boundaries</subject><subject>Chemical vapor deposition</subject><subject>Defects</subject><subject>Electronics</subject><subject>Fabrication</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>Interferometry</subject><subject>letter</subject><subject>Materials Science</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Topography</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkctLAzEQh4MotlavHmXBi5e2mSSbx0mk1AcUvOh5ye5O65bdbE26B_9704dFRNBTZsiX30z4CLkEOgLK9dg569oRo8BHYNQR6YMSesi5SY8PtVY9chbCktKUGSZOSY8JYIxq1ie30xqLtW9dVSTWlcmqtqHZdqs3dG2DziZ2nSy83fS4KSqX5G3nSusrDOfkZG7rgBf7c0Be76cvk8fh7PnhaXI3GxbCpOthHAyU5ZYWHEAqg3NpuNapERJLaURRxpXLsqQGUGi0hitALk2u57TQueEDcrPLXfn2vcOwzpoqFFjX1mHbhQyUopyl1PwDTankUmkOf6NCGCWV5Cyi1z_QZdt5F_-8pYBrABGp0Y4qfBuCx3m28lVj_UcGNNsIy7bCso2wLAqLD672sV3eYHnAvwxFYLwDQrxyC_Tf5v4e-QnYD57N</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Fei, Z.</creator><creator>Rodin, A. S.</creator><creator>Gannett, W.</creator><creator>Dai, S.</creator><creator>Regan, W.</creator><creator>Wagner, M.</creator><creator>Liu, M. K.</creator><creator>McLeod, A. S.</creator><creator>Dominguez, G.</creator><creator>Thiemens, M.</creator><creator>Castro Neto, Antonio H.</creator><creator>Keilmann, F.</creator><creator>Zettl, A.</creator><creator>Hillenbrand, R.</creator><creator>Fogler, M. M.</creator><creator>Basov, D. N.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>Electronic and plasmonic phenomena at graphene grain boundaries</title><author>Fei, Z. ; Rodin, A. S. ; Gannett, W. ; Dai, S. ; Regan, W. ; Wagner, M. ; Liu, M. K. ; McLeod, A. S. ; Dominguez, G. ; Thiemens, M. ; Castro Neto, Antonio H. ; Keilmann, F. ; Zettl, A. ; Hillenbrand, R. ; Fogler, M. M. ; Basov, D. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-529102ba0c311679ef693885946ed694cd339ddd091e48ea9371e369b8f0c8b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/301/357/918/1054</topic><topic>639/925/918/1054</topic><topic>Barriers</topic><topic>Boundaries</topic><topic>Chemical vapor deposition</topic><topic>Defects</topic><topic>Electronics</topic><topic>Fabrication</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>Interferometry</topic><topic>letter</topic><topic>Materials Science</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fei, Z.</creatorcontrib><creatorcontrib>Rodin, A. S.</creatorcontrib><creatorcontrib>Gannett, W.</creatorcontrib><creatorcontrib>Dai, S.</creatorcontrib><creatorcontrib>Regan, W.</creatorcontrib><creatorcontrib>Wagner, M.</creatorcontrib><creatorcontrib>Liu, M. K.</creatorcontrib><creatorcontrib>McLeod, A. S.</creatorcontrib><creatorcontrib>Dominguez, G.</creatorcontrib><creatorcontrib>Thiemens, M.</creatorcontrib><creatorcontrib>Castro Neto, Antonio H.</creatorcontrib><creatorcontrib>Keilmann, F.</creatorcontrib><creatorcontrib>Zettl, A.</creatorcontrib><creatorcontrib>Hillenbrand, R.</creatorcontrib><creatorcontrib>Fogler, M. M.</creatorcontrib><creatorcontrib>Basov, D. N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fei, Z.</au><au>Rodin, A. S.</au><au>Gannett, W.</au><au>Dai, S.</au><au>Regan, W.</au><au>Wagner, M.</au><au>Liu, M. K.</au><au>McLeod, A. S.</au><au>Dominguez, G.</au><au>Thiemens, M.</au><au>Castro Neto, Antonio H.</au><au>Keilmann, F.</au><au>Zettl, A.</au><au>Hillenbrand, R.</au><au>Fogler, M. M.</au><au>Basov, D. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic and plasmonic phenomena at graphene grain boundaries</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><spage>821</spage><epage>825</epage><pages>821-825</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Graphene 1 , a two-dimensional honeycomb lattice of carbon atoms of great interest in (opto)electronics 2 , 3 and plasmonics 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , can be obtained by means of diverse fabrication techniques, among which chemical vapour deposition (CVD) is one of the most promising for technological applications 12 . The electronic and mechanical properties of CVD-grown graphene depend in large part on the characteristics of the grain boundaries 13 , 14 , 15 , 16 , 17 , 18 , 19 . However, the physical properties of these grain boundaries remain challenging to characterize directly and conveniently 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 . Here we show that it is possible to visualize and investigate the grain boundaries in CVD-grown graphene using an infrared nano-imaging technique. We harness surface plasmons that are reflected and scattered by the graphene grain boundaries, thus causing plasmon interference. By recording and analysing the interference patterns, we can map grain boundaries for a large-area CVD graphene film and probe the electronic properties of individual grain boundaries. Quantitative analysis reveals that grain boundaries form electronic barriers that obstruct both electrical transport and plasmon propagation. The effective width of these barriers (∼10–20 nm) depends on the electronic screening and is on the order of the Fermi wavelength of graphene. These results uncover a microscopic mechanism that is responsible for the low electron mobility observed in CVD-grown graphene, and suggest the possibility of using electronic barriers to realize tunable plasmon reflectors and phase retarders in future graphene-based plasmonic circuits. Individual grain boundaries are imaged using a scanning plasmon interferometry technique, revealing mechanistic insights on electronic transport and plasmon propagation in graphene.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24122082</pmid><doi>10.1038/nnano.2013.197</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2013-11, Vol.8 (11), p.821-825
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_1770325099
source SpringerLink Journals; Nature
subjects 639/301/357/918/1054
639/925/918/1054
Barriers
Boundaries
Chemical vapor deposition
Defects
Electronics
Fabrication
Grain boundaries
Graphene
Interferometry
letter
Materials Science
Nanostructure
Nanotechnology
Nanotechnology and Microengineering
Physical properties
Physics
Plasmonics
Plasmons
Topography
title Electronic and plasmonic phenomena at graphene grain boundaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20and%20plasmonic%20phenomena%20at%20graphene%20grain%20boundaries&rft.jtitle=Nature%20nanotechnology&rft.au=Fei,%20Z.&rft.date=2013-11-01&rft.volume=8&rft.issue=11&rft.spage=821&rft.epage=825&rft.pages=821-825&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2013.197&rft_dat=%3Cproquest_cross%3E1770325099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449138114&rft_id=info:pmid/24122082&rfr_iscdi=true