Finite difference solution of a singular boundary value problem for the p-Laplace operator

We are concerned about a singular boundary value problem for a second order nonlinear ordinary differential equation. The differential operator of this equation is the radial part of the so-called N-dimensional p -Laplacian (where p  > 1), which reduces to the classical Laplacian when p  = 2. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2010-11, Vol.55 (2-3), p.337-348
Hauptverfasser: Morgado, M. Luísa, Lima, Pedro Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue 2-3
container_start_page 337
container_title Numerical algorithms
container_volume 55
creator Morgado, M. Luísa
Lima, Pedro Miguel
description We are concerned about a singular boundary value problem for a second order nonlinear ordinary differential equation. The differential operator of this equation is the radial part of the so-called N-dimensional p -Laplacian (where p  > 1), which reduces to the classical Laplacian when p  = 2. We introduce a finite difference method to obtain a numerical solution and, in order to improve the accuracy of this method, we use a smoothing variable substitution that takes into account the behavior of the solution in the neighborhood of the singular points.
doi_str_mv 10.1007/s11075-010-9405-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770324640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770324640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e2bd6416501a1188235aa483bd5c536780b70aa4a1bee9591a5958ff08cb6b483</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BL16iM2nTpEdZXBUWvOjFS0jbdO2SbdaklfXbm6WCIHiaP_ze8OYRcolwgwDyNiKCFAwQWJmDYPsjMkMhOSt5IY5TDygZZqU6JWcxbiCBwOWMvC27vhssbbq2tcH2taXRu3HofE99Sw2NXb8enQm08mPfmPBFP40bLd0FXzm7pa0PdHhPM1uZnTNJ73c2mMGHc3LSGhftxU-dk9fl_cvika2eH54WdytWZ3k5MMurpsixEIAGUSmeCWNylVWNqEVWSAWVhLQxWFlbihKNKIVqW1B1VVQJnJPr6W6y9DHaOOhtF2vrnOmtH6NGKSHjeZFDQq_-oBs_hj6507xEVSA_sHOCE1UHH2Owrd6Fbpte1wj6kLae0tYpRH1IW--Thk-amNh-bcPv5f9F34CJgho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918612770</pqid></control><display><type>article</type><title>Finite difference solution of a singular boundary value problem for the p-Laplace operator</title><source>SpringerNature Journals</source><creator>Morgado, M. Luísa ; Lima, Pedro Miguel</creator><creatorcontrib>Morgado, M. Luísa ; Lima, Pedro Miguel</creatorcontrib><description>We are concerned about a singular boundary value problem for a second order nonlinear ordinary differential equation. The differential operator of this equation is the radial part of the so-called N-dimensional p -Laplacian (where p  &gt; 1), which reduces to the classical Laplacian when p  = 2. We introduce a finite difference method to obtain a numerical solution and, in order to improve the accuracy of this method, we use a smoothing variable substitution that takes into account the behavior of the solution in the neighborhood of the singular points.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-010-9405-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Algorithms ; Boundary value problems ; Computer Science ; Differential equations ; Finite difference method ; Mathematical analysis ; Mathematical models ; Nonlinear differential equations ; Nonlinearity ; Numeric Computing ; Numerical Analysis ; Operators ; Operators (mathematics) ; Original Paper ; Smoothing ; Theory of Computation</subject><ispartof>Numerical algorithms, 2010-11, Vol.55 (2-3), p.337-348</ispartof><rights>Springer Science+Business Media, LLC. 2010</rights><rights>Springer Science+Business Media, LLC. 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e2bd6416501a1188235aa483bd5c536780b70aa4a1bee9591a5958ff08cb6b483</citedby><cites>FETCH-LOGICAL-c349t-e2bd6416501a1188235aa483bd5c536780b70aa4a1bee9591a5958ff08cb6b483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-010-9405-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-010-9405-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Morgado, M. Luísa</creatorcontrib><creatorcontrib>Lima, Pedro Miguel</creatorcontrib><title>Finite difference solution of a singular boundary value problem for the p-Laplace operator</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>We are concerned about a singular boundary value problem for a second order nonlinear ordinary differential equation. The differential operator of this equation is the radial part of the so-called N-dimensional p -Laplacian (where p  &gt; 1), which reduces to the classical Laplacian when p  = 2. We introduce a finite difference method to obtain a numerical solution and, in order to improve the accuracy of this method, we use a smoothing variable substitution that takes into account the behavior of the solution in the neighborhood of the singular points.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Finite difference method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear differential equations</subject><subject>Nonlinearity</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Operators</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Smoothing</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8BL16iM2nTpEdZXBUWvOjFS0jbdO2SbdaklfXbm6WCIHiaP_ze8OYRcolwgwDyNiKCFAwQWJmDYPsjMkMhOSt5IY5TDygZZqU6JWcxbiCBwOWMvC27vhssbbq2tcH2taXRu3HofE99Sw2NXb8enQm08mPfmPBFP40bLd0FXzm7pa0PdHhPM1uZnTNJ73c2mMGHc3LSGhftxU-dk9fl_cvika2eH54WdytWZ3k5MMurpsixEIAGUSmeCWNylVWNqEVWSAWVhLQxWFlbihKNKIVqW1B1VVQJnJPr6W6y9DHaOOhtF2vrnOmtH6NGKSHjeZFDQq_-oBs_hj6507xEVSA_sHOCE1UHH2Owrd6Fbpte1wj6kLae0tYpRH1IW--Thk-amNh-bcPv5f9F34CJgho</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Morgado, M. Luísa</creator><creator>Lima, Pedro Miguel</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>Finite difference solution of a singular boundary value problem for the p-Laplace operator</title><author>Morgado, M. Luísa ; Lima, Pedro Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e2bd6416501a1188235aa483bd5c536780b70aa4a1bee9591a5958ff08cb6b483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Finite difference method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear differential equations</topic><topic>Nonlinearity</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Operators</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Smoothing</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morgado, M. Luísa</creatorcontrib><creatorcontrib>Lima, Pedro Miguel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morgado, M. Luísa</au><au>Lima, Pedro Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite difference solution of a singular boundary value problem for the p-Laplace operator</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>55</volume><issue>2-3</issue><spage>337</spage><epage>348</epage><pages>337-348</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>We are concerned about a singular boundary value problem for a second order nonlinear ordinary differential equation. The differential operator of this equation is the radial part of the so-called N-dimensional p -Laplacian (where p  &gt; 1), which reduces to the classical Laplacian when p  = 2. We introduce a finite difference method to obtain a numerical solution and, in order to improve the accuracy of this method, we use a smoothing variable substitution that takes into account the behavior of the solution in the neighborhood of the singular points.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11075-010-9405-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2010-11, Vol.55 (2-3), p.337-348
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_miscellaneous_1770324640
source SpringerNature Journals
subjects Algebra
Algorithms
Boundary value problems
Computer Science
Differential equations
Finite difference method
Mathematical analysis
Mathematical models
Nonlinear differential equations
Nonlinearity
Numeric Computing
Numerical Analysis
Operators
Operators (mathematics)
Original Paper
Smoothing
Theory of Computation
title Finite difference solution of a singular boundary value problem for the p-Laplace operator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20difference%20solution%20of%20a%20singular%20boundary%20value%20problem%20for%20the%20p-Laplace%20operator&rft.jtitle=Numerical%20algorithms&rft.au=Morgado,%20M.%20Lu%C3%ADsa&rft.date=2010-11-01&rft.volume=55&rft.issue=2-3&rft.spage=337&rft.epage=348&rft.pages=337-348&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-010-9405-x&rft_dat=%3Cproquest_cross%3E1770324640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918612770&rft_id=info:pmid/&rfr_iscdi=true