Finite difference solution of a singular boundary value problem for the p-Laplace operator
We are concerned about a singular boundary value problem for a second order nonlinear ordinary differential equation. The differential operator of this equation is the radial part of the so-called N-dimensional p -Laplacian (where p > 1), which reduces to the classical Laplacian when p = 2. We...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2010-11, Vol.55 (2-3), p.337-348 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 348 |
---|---|
container_issue | 2-3 |
container_start_page | 337 |
container_title | Numerical algorithms |
container_volume | 55 |
creator | Morgado, M. Luísa Lima, Pedro Miguel |
description | We are concerned about a singular boundary value problem for a second order nonlinear ordinary differential equation. The differential operator of this equation is the radial part of the so-called N-dimensional
p
-Laplacian (where
p
> 1), which reduces to the classical Laplacian when
p
= 2. We introduce a finite difference method to obtain a numerical solution and, in order to improve the accuracy of this method, we use a smoothing variable substitution that takes into account the behavior of the solution in the neighborhood of the singular points. |
doi_str_mv | 10.1007/s11075-010-9405-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770324640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770324640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e2bd6416501a1188235aa483bd5c536780b70aa4a1bee9591a5958ff08cb6b483</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BL16iM2nTpEdZXBUWvOjFS0jbdO2SbdaklfXbm6WCIHiaP_ze8OYRcolwgwDyNiKCFAwQWJmDYPsjMkMhOSt5IY5TDygZZqU6JWcxbiCBwOWMvC27vhssbbq2tcH2taXRu3HofE99Sw2NXb8enQm08mPfmPBFP40bLd0FXzm7pa0PdHhPM1uZnTNJ73c2mMGHc3LSGhftxU-dk9fl_cvika2eH54WdytWZ3k5MMurpsixEIAGUSmeCWNylVWNqEVWSAWVhLQxWFlbihKNKIVqW1B1VVQJnJPr6W6y9DHaOOhtF2vrnOmtH6NGKSHjeZFDQq_-oBs_hj6507xEVSA_sHOCE1UHH2Owrd6Fbpte1wj6kLae0tYpRH1IW--Thk-amNh-bcPv5f9F34CJgho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918612770</pqid></control><display><type>article</type><title>Finite difference solution of a singular boundary value problem for the p-Laplace operator</title><source>SpringerNature Journals</source><creator>Morgado, M. Luísa ; Lima, Pedro Miguel</creator><creatorcontrib>Morgado, M. Luísa ; Lima, Pedro Miguel</creatorcontrib><description>We are concerned about a singular boundary value problem for a second order nonlinear ordinary differential equation. The differential operator of this equation is the radial part of the so-called N-dimensional
p
-Laplacian (where
p
> 1), which reduces to the classical Laplacian when
p
= 2. We introduce a finite difference method to obtain a numerical solution and, in order to improve the accuracy of this method, we use a smoothing variable substitution that takes into account the behavior of the solution in the neighborhood of the singular points.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-010-9405-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Algorithms ; Boundary value problems ; Computer Science ; Differential equations ; Finite difference method ; Mathematical analysis ; Mathematical models ; Nonlinear differential equations ; Nonlinearity ; Numeric Computing ; Numerical Analysis ; Operators ; Operators (mathematics) ; Original Paper ; Smoothing ; Theory of Computation</subject><ispartof>Numerical algorithms, 2010-11, Vol.55 (2-3), p.337-348</ispartof><rights>Springer Science+Business Media, LLC. 2010</rights><rights>Springer Science+Business Media, LLC. 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e2bd6416501a1188235aa483bd5c536780b70aa4a1bee9591a5958ff08cb6b483</citedby><cites>FETCH-LOGICAL-c349t-e2bd6416501a1188235aa483bd5c536780b70aa4a1bee9591a5958ff08cb6b483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-010-9405-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-010-9405-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Morgado, M. Luísa</creatorcontrib><creatorcontrib>Lima, Pedro Miguel</creatorcontrib><title>Finite difference solution of a singular boundary value problem for the p-Laplace operator</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>We are concerned about a singular boundary value problem for a second order nonlinear ordinary differential equation. The differential operator of this equation is the radial part of the so-called N-dimensional
p
-Laplacian (where
p
> 1), which reduces to the classical Laplacian when
p
= 2. We introduce a finite difference method to obtain a numerical solution and, in order to improve the accuracy of this method, we use a smoothing variable substitution that takes into account the behavior of the solution in the neighborhood of the singular points.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Finite difference method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear differential equations</subject><subject>Nonlinearity</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Operators</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Smoothing</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8BL16iM2nTpEdZXBUWvOjFS0jbdO2SbdaklfXbm6WCIHiaP_ze8OYRcolwgwDyNiKCFAwQWJmDYPsjMkMhOSt5IY5TDygZZqU6JWcxbiCBwOWMvC27vhssbbq2tcH2taXRu3HofE99Sw2NXb8enQm08mPfmPBFP40bLd0FXzm7pa0PdHhPM1uZnTNJ73c2mMGHc3LSGhftxU-dk9fl_cvika2eH54WdytWZ3k5MMurpsixEIAGUSmeCWNylVWNqEVWSAWVhLQxWFlbihKNKIVqW1B1VVQJnJPr6W6y9DHaOOhtF2vrnOmtH6NGKSHjeZFDQq_-oBs_hj6507xEVSA_sHOCE1UHH2Owrd6Fbpte1wj6kLae0tYpRH1IW--Thk-amNh-bcPv5f9F34CJgho</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Morgado, M. Luísa</creator><creator>Lima, Pedro Miguel</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>Finite difference solution of a singular boundary value problem for the p-Laplace operator</title><author>Morgado, M. Luísa ; Lima, Pedro Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e2bd6416501a1188235aa483bd5c536780b70aa4a1bee9591a5958ff08cb6b483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Finite difference method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear differential equations</topic><topic>Nonlinearity</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Operators</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Smoothing</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morgado, M. Luísa</creatorcontrib><creatorcontrib>Lima, Pedro Miguel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morgado, M. Luísa</au><au>Lima, Pedro Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite difference solution of a singular boundary value problem for the p-Laplace operator</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>55</volume><issue>2-3</issue><spage>337</spage><epage>348</epage><pages>337-348</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>We are concerned about a singular boundary value problem for a second order nonlinear ordinary differential equation. The differential operator of this equation is the radial part of the so-called N-dimensional
p
-Laplacian (where
p
> 1), which reduces to the classical Laplacian when
p
= 2. We introduce a finite difference method to obtain a numerical solution and, in order to improve the accuracy of this method, we use a smoothing variable substitution that takes into account the behavior of the solution in the neighborhood of the singular points.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11075-010-9405-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2010-11, Vol.55 (2-3), p.337-348 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770324640 |
source | SpringerNature Journals |
subjects | Algebra Algorithms Boundary value problems Computer Science Differential equations Finite difference method Mathematical analysis Mathematical models Nonlinear differential equations Nonlinearity Numeric Computing Numerical Analysis Operators Operators (mathematics) Original Paper Smoothing Theory of Computation |
title | Finite difference solution of a singular boundary value problem for the p-Laplace operator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20difference%20solution%20of%20a%20singular%20boundary%20value%20problem%20for%20the%20p-Laplace%20operator&rft.jtitle=Numerical%20algorithms&rft.au=Morgado,%20M.%20Lu%C3%ADsa&rft.date=2010-11-01&rft.volume=55&rft.issue=2-3&rft.spage=337&rft.epage=348&rft.pages=337-348&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-010-9405-x&rft_dat=%3Cproquest_cross%3E1770324640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918612770&rft_id=info:pmid/&rfr_iscdi=true |