Fermi-liquid theory for the single-impurity Anderson model

We generalize Nozieres' Fermi-liquid theory for the low-energy behavior of the Kondo model to that of the single-impurity Anderson model. In addition to the electrons' phase shift at the Fermi energy, the low-energy Fermi-liquid theory is characterized by four Fermi-liquid parameters: the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-08, Vol.92 (7), Article 075120
Hauptverfasser: Mora, Christophe, Moca, Cătălin Paşcu, von Delft, Jan, Zaránd, Gergely
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 92
creator Mora, Christophe
Moca, Cătălin Paşcu
von Delft, Jan
Zaránd, Gergely
description We generalize Nozieres' Fermi-liquid theory for the low-energy behavior of the Kondo model to that of the single-impurity Anderson model. In addition to the electrons' phase shift at the Fermi energy, the low-energy Fermi-liquid theory is characterized by four Fermi-liquid parameters: the two given by Nozieres that enter to first order in the excitation energy, and two additional ones that enter to second order and are needed away from particle-hole symmetry. We express all four parameters in terms of zero-temperature physical observables, namely the local charge and spin susceptibilities and their derivatives with respect to the local level position. We determine these in terms of the bare parameters of the Anderson model using Bethe ansatz and numerical renormalization group (NRG) calculations. Our low-energy Fermi-liquid theory applies throughout the crossover from the strong-coupling Kondo regime via the mixed-valence regime to the empty-orbital regime. From the Fermi-liquid theory, we determine the conductance through a quantum dot symmetrically coupled to two leads in the regime of small magnetic field, low temperature, and small bias voltage, and compute the coefficients of the ~ B super(2), ~ T super(2) and terms exactly in terms of the Fermi-liquid parameters. The coefficients of T super(2), V super(2) and B super(2) are found to change sign during the Kondo to empty-orbital crossover. The crossover becomes universal in the limit that the local interaction is much larger than the level width. For completeness, we also compute the shot noise and discuss the resulting Fano factor.
doi_str_mv 10.1103/PhysRevB.92.075120
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770321584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770321584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-ef95f94b08f44a9dc49b849ddeb5da15f8b1dfeadd51a31dec0b10445133ae3a3</originalsourceid><addsrcrecordid>eNo1kEtLAzEURoMoWKt_wNUs3Uy9Nw86cVeLVaGgiIK7kJnc2Mg82mRGmH9vS3X1ncXhWxzGrhFmiCBuXzdjeqOf-5nmM5gr5HDCJqgU5Fyoz9M9gy5yQI7n7CKlbwCUWvIJu1tRbEJeh90QXNZvqItj5rt4wCyF9qumPDTbIYZ-zBato5i6Nms6R_UlO_O2TnT1t1P2sXp4Xz7l65fH5-VinVdCQ5-T18prWULhpbTaVVKXhdTOUamcReWLEp0n65xCK9BRBSWClAqFsCSsmLKb4-82druBUm-akCqqa9tSNySD8zkIjqqQe5Uf1Sp2KUXyZhtDY-NoEMwhlPkPZTQ3x1DiF6d-Xqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770321584</pqid></control><display><type>article</type><title>Fermi-liquid theory for the single-impurity Anderson model</title><source>American Physical Society Journals</source><creator>Mora, Christophe ; Moca, Cătălin Paşcu ; von Delft, Jan ; Zaránd, Gergely</creator><creatorcontrib>Mora, Christophe ; Moca, Cătălin Paşcu ; von Delft, Jan ; Zaránd, Gergely</creatorcontrib><description>We generalize Nozieres' Fermi-liquid theory for the low-energy behavior of the Kondo model to that of the single-impurity Anderson model. In addition to the electrons' phase shift at the Fermi energy, the low-energy Fermi-liquid theory is characterized by four Fermi-liquid parameters: the two given by Nozieres that enter to first order in the excitation energy, and two additional ones that enter to second order and are needed away from particle-hole symmetry. We express all four parameters in terms of zero-temperature physical observables, namely the local charge and spin susceptibilities and their derivatives with respect to the local level position. We determine these in terms of the bare parameters of the Anderson model using Bethe ansatz and numerical renormalization group (NRG) calculations. Our low-energy Fermi-liquid theory applies throughout the crossover from the strong-coupling Kondo regime via the mixed-valence regime to the empty-orbital regime. From the Fermi-liquid theory, we determine the conductance through a quantum dot symmetrically coupled to two leads in the regime of small magnetic field, low temperature, and small bias voltage, and compute the coefficients of the ~ B super(2), ~ T super(2) and terms exactly in terms of the Fermi-liquid parameters. The coefficients of T super(2), V super(2) and B super(2) are found to change sign during the Kondo to empty-orbital crossover. The crossover becomes universal in the limit that the local interaction is much larger than the level width. For completeness, we also compute the shot noise and discuss the resulting Fano factor.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.92.075120</identifier><language>eng</language><subject>Charge ; Condensed matter ; Crossovers ; Derivatives ; Fermi surfaces ; Low energy ; Mathematical models ; Phase shift</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2015-08, Vol.92 (7), Article 075120</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-ef95f94b08f44a9dc49b849ddeb5da15f8b1dfeadd51a31dec0b10445133ae3a3</citedby><cites>FETCH-LOGICAL-c390t-ef95f94b08f44a9dc49b849ddeb5da15f8b1dfeadd51a31dec0b10445133ae3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Mora, Christophe</creatorcontrib><creatorcontrib>Moca, Cătălin Paşcu</creatorcontrib><creatorcontrib>von Delft, Jan</creatorcontrib><creatorcontrib>Zaránd, Gergely</creatorcontrib><title>Fermi-liquid theory for the single-impurity Anderson model</title><title>Physical review. B, Condensed matter and materials physics</title><description>We generalize Nozieres' Fermi-liquid theory for the low-energy behavior of the Kondo model to that of the single-impurity Anderson model. In addition to the electrons' phase shift at the Fermi energy, the low-energy Fermi-liquid theory is characterized by four Fermi-liquid parameters: the two given by Nozieres that enter to first order in the excitation energy, and two additional ones that enter to second order and are needed away from particle-hole symmetry. We express all four parameters in terms of zero-temperature physical observables, namely the local charge and spin susceptibilities and their derivatives with respect to the local level position. We determine these in terms of the bare parameters of the Anderson model using Bethe ansatz and numerical renormalization group (NRG) calculations. Our low-energy Fermi-liquid theory applies throughout the crossover from the strong-coupling Kondo regime via the mixed-valence regime to the empty-orbital regime. From the Fermi-liquid theory, we determine the conductance through a quantum dot symmetrically coupled to two leads in the regime of small magnetic field, low temperature, and small bias voltage, and compute the coefficients of the ~ B super(2), ~ T super(2) and terms exactly in terms of the Fermi-liquid parameters. The coefficients of T super(2), V super(2) and B super(2) are found to change sign during the Kondo to empty-orbital crossover. The crossover becomes universal in the limit that the local interaction is much larger than the level width. For completeness, we also compute the shot noise and discuss the resulting Fano factor.</description><subject>Charge</subject><subject>Condensed matter</subject><subject>Crossovers</subject><subject>Derivatives</subject><subject>Fermi surfaces</subject><subject>Low energy</subject><subject>Mathematical models</subject><subject>Phase shift</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLAzEURoMoWKt_wNUs3Uy9Nw86cVeLVaGgiIK7kJnc2Mg82mRGmH9vS3X1ncXhWxzGrhFmiCBuXzdjeqOf-5nmM5gr5HDCJqgU5Fyoz9M9gy5yQI7n7CKlbwCUWvIJu1tRbEJeh90QXNZvqItj5rt4wCyF9qumPDTbIYZ-zBato5i6Nms6R_UlO_O2TnT1t1P2sXp4Xz7l65fH5-VinVdCQ5-T18prWULhpbTaVVKXhdTOUamcReWLEp0n65xCK9BRBSWClAqFsCSsmLKb4-82druBUm-akCqqa9tSNySD8zkIjqqQe5Uf1Sp2KUXyZhtDY-NoEMwhlPkPZTQ3x1DiF6d-Xqg</recordid><startdate>20150810</startdate><enddate>20150810</enddate><creator>Mora, Christophe</creator><creator>Moca, Cătălin Paşcu</creator><creator>von Delft, Jan</creator><creator>Zaránd, Gergely</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150810</creationdate><title>Fermi-liquid theory for the single-impurity Anderson model</title><author>Mora, Christophe ; Moca, Cătălin Paşcu ; von Delft, Jan ; Zaránd, Gergely</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-ef95f94b08f44a9dc49b849ddeb5da15f8b1dfeadd51a31dec0b10445133ae3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Charge</topic><topic>Condensed matter</topic><topic>Crossovers</topic><topic>Derivatives</topic><topic>Fermi surfaces</topic><topic>Low energy</topic><topic>Mathematical models</topic><topic>Phase shift</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mora, Christophe</creatorcontrib><creatorcontrib>Moca, Cătălin Paşcu</creatorcontrib><creatorcontrib>von Delft, Jan</creatorcontrib><creatorcontrib>Zaránd, Gergely</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mora, Christophe</au><au>Moca, Cătălin Paşcu</au><au>von Delft, Jan</au><au>Zaránd, Gergely</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermi-liquid theory for the single-impurity Anderson model</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2015-08-10</date><risdate>2015</risdate><volume>92</volume><issue>7</issue><artnum>075120</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We generalize Nozieres' Fermi-liquid theory for the low-energy behavior of the Kondo model to that of the single-impurity Anderson model. In addition to the electrons' phase shift at the Fermi energy, the low-energy Fermi-liquid theory is characterized by four Fermi-liquid parameters: the two given by Nozieres that enter to first order in the excitation energy, and two additional ones that enter to second order and are needed away from particle-hole symmetry. We express all four parameters in terms of zero-temperature physical observables, namely the local charge and spin susceptibilities and their derivatives with respect to the local level position. We determine these in terms of the bare parameters of the Anderson model using Bethe ansatz and numerical renormalization group (NRG) calculations. Our low-energy Fermi-liquid theory applies throughout the crossover from the strong-coupling Kondo regime via the mixed-valence regime to the empty-orbital regime. From the Fermi-liquid theory, we determine the conductance through a quantum dot symmetrically coupled to two leads in the regime of small magnetic field, low temperature, and small bias voltage, and compute the coefficients of the ~ B super(2), ~ T super(2) and terms exactly in terms of the Fermi-liquid parameters. The coefficients of T super(2), V super(2) and B super(2) are found to change sign during the Kondo to empty-orbital crossover. The crossover becomes universal in the limit that the local interaction is much larger than the level width. For completeness, we also compute the shot noise and discuss the resulting Fano factor.</abstract><doi>10.1103/PhysRevB.92.075120</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2015-08, Vol.92 (7), Article 075120
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1770321584
source American Physical Society Journals
subjects Charge
Condensed matter
Crossovers
Derivatives
Fermi surfaces
Low energy
Mathematical models
Phase shift
title Fermi-liquid theory for the single-impurity Anderson model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermi-liquid%20theory%20for%20the%20single-impurity%20Anderson%20model&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Mora,%20Christophe&rft.date=2015-08-10&rft.volume=92&rft.issue=7&rft.artnum=075120&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.075120&rft_dat=%3Cproquest_cross%3E1770321584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770321584&rft_id=info:pmid/&rfr_iscdi=true