Fermi-liquid theory for the single-impurity Anderson model
We generalize Nozieres' Fermi-liquid theory for the low-energy behavior of the Kondo model to that of the single-impurity Anderson model. In addition to the electrons' phase shift at the Fermi energy, the low-energy Fermi-liquid theory is characterized by four Fermi-liquid parameters: the...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-08, Vol.92 (7), Article 075120 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 92 |
creator | Mora, Christophe Moca, Cătălin Paşcu von Delft, Jan Zaránd, Gergely |
description | We generalize Nozieres' Fermi-liquid theory for the low-energy behavior of the Kondo model to that of the single-impurity Anderson model. In addition to the electrons' phase shift at the Fermi energy, the low-energy Fermi-liquid theory is characterized by four Fermi-liquid parameters: the two given by Nozieres that enter to first order in the excitation energy, and two additional ones that enter to second order and are needed away from particle-hole symmetry. We express all four parameters in terms of zero-temperature physical observables, namely the local charge and spin susceptibilities and their derivatives with respect to the local level position. We determine these in terms of the bare parameters of the Anderson model using Bethe ansatz and numerical renormalization group (NRG) calculations. Our low-energy Fermi-liquid theory applies throughout the crossover from the strong-coupling Kondo regime via the mixed-valence regime to the empty-orbital regime. From the Fermi-liquid theory, we determine the conductance through a quantum dot symmetrically coupled to two leads in the regime of small magnetic field, low temperature, and small bias voltage, and compute the coefficients of the ~ B super(2), ~ T super(2) and terms exactly in terms of the Fermi-liquid parameters. The coefficients of T super(2), V super(2) and B super(2) are found to change sign during the Kondo to empty-orbital crossover. The crossover becomes universal in the limit that the local interaction is much larger than the level width. For completeness, we also compute the shot noise and discuss the resulting Fano factor. |
doi_str_mv | 10.1103/PhysRevB.92.075120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770321584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770321584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-ef95f94b08f44a9dc49b849ddeb5da15f8b1dfeadd51a31dec0b10445133ae3a3</originalsourceid><addsrcrecordid>eNo1kEtLAzEURoMoWKt_wNUs3Uy9Nw86cVeLVaGgiIK7kJnc2Mg82mRGmH9vS3X1ncXhWxzGrhFmiCBuXzdjeqOf-5nmM5gr5HDCJqgU5Fyoz9M9gy5yQI7n7CKlbwCUWvIJu1tRbEJeh90QXNZvqItj5rt4wCyF9qumPDTbIYZ-zBato5i6Nms6R_UlO_O2TnT1t1P2sXp4Xz7l65fH5-VinVdCQ5-T18prWULhpbTaVVKXhdTOUamcReWLEp0n65xCK9BRBSWClAqFsCSsmLKb4-82druBUm-akCqqa9tSNySD8zkIjqqQe5Uf1Sp2KUXyZhtDY-NoEMwhlPkPZTQ3x1DiF6d-Xqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770321584</pqid></control><display><type>article</type><title>Fermi-liquid theory for the single-impurity Anderson model</title><source>American Physical Society Journals</source><creator>Mora, Christophe ; Moca, Cătălin Paşcu ; von Delft, Jan ; Zaránd, Gergely</creator><creatorcontrib>Mora, Christophe ; Moca, Cătălin Paşcu ; von Delft, Jan ; Zaránd, Gergely</creatorcontrib><description>We generalize Nozieres' Fermi-liquid theory for the low-energy behavior of the Kondo model to that of the single-impurity Anderson model. In addition to the electrons' phase shift at the Fermi energy, the low-energy Fermi-liquid theory is characterized by four Fermi-liquid parameters: the two given by Nozieres that enter to first order in the excitation energy, and two additional ones that enter to second order and are needed away from particle-hole symmetry. We express all four parameters in terms of zero-temperature physical observables, namely the local charge and spin susceptibilities and their derivatives with respect to the local level position. We determine these in terms of the bare parameters of the Anderson model using Bethe ansatz and numerical renormalization group (NRG) calculations. Our low-energy Fermi-liquid theory applies throughout the crossover from the strong-coupling Kondo regime via the mixed-valence regime to the empty-orbital regime. From the Fermi-liquid theory, we determine the conductance through a quantum dot symmetrically coupled to two leads in the regime of small magnetic field, low temperature, and small bias voltage, and compute the coefficients of the ~ B super(2), ~ T super(2) and terms exactly in terms of the Fermi-liquid parameters. The coefficients of T super(2), V super(2) and B super(2) are found to change sign during the Kondo to empty-orbital crossover. The crossover becomes universal in the limit that the local interaction is much larger than the level width. For completeness, we also compute the shot noise and discuss the resulting Fano factor.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.92.075120</identifier><language>eng</language><subject>Charge ; Condensed matter ; Crossovers ; Derivatives ; Fermi surfaces ; Low energy ; Mathematical models ; Phase shift</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2015-08, Vol.92 (7), Article 075120</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-ef95f94b08f44a9dc49b849ddeb5da15f8b1dfeadd51a31dec0b10445133ae3a3</citedby><cites>FETCH-LOGICAL-c390t-ef95f94b08f44a9dc49b849ddeb5da15f8b1dfeadd51a31dec0b10445133ae3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Mora, Christophe</creatorcontrib><creatorcontrib>Moca, Cătălin Paşcu</creatorcontrib><creatorcontrib>von Delft, Jan</creatorcontrib><creatorcontrib>Zaránd, Gergely</creatorcontrib><title>Fermi-liquid theory for the single-impurity Anderson model</title><title>Physical review. B, Condensed matter and materials physics</title><description>We generalize Nozieres' Fermi-liquid theory for the low-energy behavior of the Kondo model to that of the single-impurity Anderson model. In addition to the electrons' phase shift at the Fermi energy, the low-energy Fermi-liquid theory is characterized by four Fermi-liquid parameters: the two given by Nozieres that enter to first order in the excitation energy, and two additional ones that enter to second order and are needed away from particle-hole symmetry. We express all four parameters in terms of zero-temperature physical observables, namely the local charge and spin susceptibilities and their derivatives with respect to the local level position. We determine these in terms of the bare parameters of the Anderson model using Bethe ansatz and numerical renormalization group (NRG) calculations. Our low-energy Fermi-liquid theory applies throughout the crossover from the strong-coupling Kondo regime via the mixed-valence regime to the empty-orbital regime. From the Fermi-liquid theory, we determine the conductance through a quantum dot symmetrically coupled to two leads in the regime of small magnetic field, low temperature, and small bias voltage, and compute the coefficients of the ~ B super(2), ~ T super(2) and terms exactly in terms of the Fermi-liquid parameters. The coefficients of T super(2), V super(2) and B super(2) are found to change sign during the Kondo to empty-orbital crossover. The crossover becomes universal in the limit that the local interaction is much larger than the level width. For completeness, we also compute the shot noise and discuss the resulting Fano factor.</description><subject>Charge</subject><subject>Condensed matter</subject><subject>Crossovers</subject><subject>Derivatives</subject><subject>Fermi surfaces</subject><subject>Low energy</subject><subject>Mathematical models</subject><subject>Phase shift</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLAzEURoMoWKt_wNUs3Uy9Nw86cVeLVaGgiIK7kJnc2Mg82mRGmH9vS3X1ncXhWxzGrhFmiCBuXzdjeqOf-5nmM5gr5HDCJqgU5Fyoz9M9gy5yQI7n7CKlbwCUWvIJu1tRbEJeh90QXNZvqItj5rt4wCyF9qumPDTbIYZ-zBato5i6Nms6R_UlO_O2TnT1t1P2sXp4Xz7l65fH5-VinVdCQ5-T18prWULhpbTaVVKXhdTOUamcReWLEp0n65xCK9BRBSWClAqFsCSsmLKb4-82druBUm-akCqqa9tSNySD8zkIjqqQe5Uf1Sp2KUXyZhtDY-NoEMwhlPkPZTQ3x1DiF6d-Xqg</recordid><startdate>20150810</startdate><enddate>20150810</enddate><creator>Mora, Christophe</creator><creator>Moca, Cătălin Paşcu</creator><creator>von Delft, Jan</creator><creator>Zaránd, Gergely</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150810</creationdate><title>Fermi-liquid theory for the single-impurity Anderson model</title><author>Mora, Christophe ; Moca, Cătălin Paşcu ; von Delft, Jan ; Zaránd, Gergely</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-ef95f94b08f44a9dc49b849ddeb5da15f8b1dfeadd51a31dec0b10445133ae3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Charge</topic><topic>Condensed matter</topic><topic>Crossovers</topic><topic>Derivatives</topic><topic>Fermi surfaces</topic><topic>Low energy</topic><topic>Mathematical models</topic><topic>Phase shift</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mora, Christophe</creatorcontrib><creatorcontrib>Moca, Cătălin Paşcu</creatorcontrib><creatorcontrib>von Delft, Jan</creatorcontrib><creatorcontrib>Zaránd, Gergely</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mora, Christophe</au><au>Moca, Cătălin Paşcu</au><au>von Delft, Jan</au><au>Zaránd, Gergely</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermi-liquid theory for the single-impurity Anderson model</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2015-08-10</date><risdate>2015</risdate><volume>92</volume><issue>7</issue><artnum>075120</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We generalize Nozieres' Fermi-liquid theory for the low-energy behavior of the Kondo model to that of the single-impurity Anderson model. In addition to the electrons' phase shift at the Fermi energy, the low-energy Fermi-liquid theory is characterized by four Fermi-liquid parameters: the two given by Nozieres that enter to first order in the excitation energy, and two additional ones that enter to second order and are needed away from particle-hole symmetry. We express all four parameters in terms of zero-temperature physical observables, namely the local charge and spin susceptibilities and their derivatives with respect to the local level position. We determine these in terms of the bare parameters of the Anderson model using Bethe ansatz and numerical renormalization group (NRG) calculations. Our low-energy Fermi-liquid theory applies throughout the crossover from the strong-coupling Kondo regime via the mixed-valence regime to the empty-orbital regime. From the Fermi-liquid theory, we determine the conductance through a quantum dot symmetrically coupled to two leads in the regime of small magnetic field, low temperature, and small bias voltage, and compute the coefficients of the ~ B super(2), ~ T super(2) and terms exactly in terms of the Fermi-liquid parameters. The coefficients of T super(2), V super(2) and B super(2) are found to change sign during the Kondo to empty-orbital crossover. The crossover becomes universal in the limit that the local interaction is much larger than the level width. For completeness, we also compute the shot noise and discuss the resulting Fano factor.</abstract><doi>10.1103/PhysRevB.92.075120</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2015-08, Vol.92 (7), Article 075120 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_1770321584 |
source | American Physical Society Journals |
subjects | Charge Condensed matter Crossovers Derivatives Fermi surfaces Low energy Mathematical models Phase shift |
title | Fermi-liquid theory for the single-impurity Anderson model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermi-liquid%20theory%20for%20the%20single-impurity%20Anderson%20model&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Mora,%20Christophe&rft.date=2015-08-10&rft.volume=92&rft.issue=7&rft.artnum=075120&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.075120&rft_dat=%3Cproquest_cross%3E1770321584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770321584&rft_id=info:pmid/&rfr_iscdi=true |