Lunar far side surface navigation using Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON)

We study the application of Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) to track vehicles on the far side of the lunar surface. The LiAISON architecture is demonstrated to achieve accurate orbit determination solutions for various mission scenarios in the Earth–Moon system....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2015-12, Vol.117, p.116-129
Hauptverfasser: Hesar, Siamak G., Parker, Jeffrey S., Leonard, Jason M., McGranaghan, Ryan M., Born, George H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue
container_start_page 116
container_title Acta astronautica
container_volume 117
creator Hesar, Siamak G.
Parker, Jeffrey S.
Leonard, Jason M.
McGranaghan, Ryan M.
Born, George H.
description We study the application of Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) to track vehicles on the far side of the lunar surface. The LiAISON architecture is demonstrated to achieve accurate orbit determination solutions for various mission scenarios in the Earth–Moon system. Given the proper description of the force field, LiAISON is capable of producing absolute orbit determination solutions using relative satellite-to-satellite tracking observations alone. The lack of direct communication between Earth-based tracking stations and the far side of the Moon provides an ideal opportunity for implementing LiAISON. This paper presents a novel approach to use the LiAISON architecture to perform autonomous navigation of assets on the lunar far side surface. Relative measurements between a spacecraft placed in an EML-2 halo orbit and lunar surface asset(s) are simulated and processed. Comprehensive simulation results show that absolute states of the surface assets are observable with an achieved accuracy of the position estimate on the order of tens of meters. •We study a new navigation method to track landers/rovers on the lunar surface.•Relative measurements between a halo orbiter and surface assets are processed.•We achieved accuracies on the order of tens of meters on the lunar far side surface.•Navigation performance depends on the size of configuration of the halo orbit.
doi_str_mv 10.1016/j.actaastro.2015.07.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770321138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576515003082</els_id><sourcerecordid>1770321138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-ec2c8e2eecfe03e90df44cbbd011105ebae43038991a9e68e6ababf556c76f0f3</originalsourceid><addsrcrecordid>eNqNkUtPwzAQhC0EEuXxG_ARDgnrPOzkWCEelSJ6AM6W46yRS-sU20Hi3-OqCI5wWO1lZjSjj5ALBjkDxq9XudJRqRD9mBfA6hxEDoU4IDPWiDYroIRDMgNoq6wWvD4mJyGsAEAUTTsjm25yylOTLtgBaZi8URqpUx_2VUU7OjoF615pZ90bDnQ-xdGNm3EKdOEi-u1aOYzKf9InFXG9thHp0vc20sffhMvOzhdPy8erM3Jk1Drg-fc_JS93t883D1m3vF_czLtMlw2LGepCN1ggaoNQYguDqSrd9wMwxqDGXmFVQtm0LVMt8ga56lVv6pprwQ2Y8pRc7nO3fnyfMES5sUGneqlsqi6ZEFAWjJXNP6QVbwTnXCSp2Eu1H0PwaOTW203aLhnIHQu5kj8s5I6FBCETi-Sc752YRn9Y9DJoi07jYD3qKIfR_pnxBVyUmP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746876667</pqid></control><display><type>article</type><title>Lunar far side surface navigation using Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hesar, Siamak G. ; Parker, Jeffrey S. ; Leonard, Jason M. ; McGranaghan, Ryan M. ; Born, George H.</creator><creatorcontrib>Hesar, Siamak G. ; Parker, Jeffrey S. ; Leonard, Jason M. ; McGranaghan, Ryan M. ; Born, George H.</creatorcontrib><description>We study the application of Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) to track vehicles on the far side of the lunar surface. The LiAISON architecture is demonstrated to achieve accurate orbit determination solutions for various mission scenarios in the Earth–Moon system. Given the proper description of the force field, LiAISON is capable of producing absolute orbit determination solutions using relative satellite-to-satellite tracking observations alone. The lack of direct communication between Earth-based tracking stations and the far side of the Moon provides an ideal opportunity for implementing LiAISON. This paper presents a novel approach to use the LiAISON architecture to perform autonomous navigation of assets on the lunar far side surface. Relative measurements between a spacecraft placed in an EML-2 halo orbit and lunar surface asset(s) are simulated and processed. Comprehensive simulation results show that absolute states of the surface assets are observable with an achieved accuracy of the position estimate on the order of tens of meters. •We study a new navigation method to track landers/rovers on the lunar surface.•Relative measurements between a halo orbiter and surface assets are processed.•We achieved accuracies on the order of tens of meters on the lunar far side surface.•Navigation performance depends on the size of configuration of the halo orbit.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2015.07.027</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Architecture ; Autonomous ; LiAISON ; Lunar far side ; Lunar surface ; Navigation ; Orbit determination ; Satellite orbits ; Simulation</subject><ispartof>Acta astronautica, 2015-12, Vol.117, p.116-129</ispartof><rights>2015 IAA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-ec2c8e2eecfe03e90df44cbbd011105ebae43038991a9e68e6ababf556c76f0f3</citedby><cites>FETCH-LOGICAL-c381t-ec2c8e2eecfe03e90df44cbbd011105ebae43038991a9e68e6ababf556c76f0f3</cites><orcidid>0000-0002-9605-0007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2015.07.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Hesar, Siamak G.</creatorcontrib><creatorcontrib>Parker, Jeffrey S.</creatorcontrib><creatorcontrib>Leonard, Jason M.</creatorcontrib><creatorcontrib>McGranaghan, Ryan M.</creatorcontrib><creatorcontrib>Born, George H.</creatorcontrib><title>Lunar far side surface navigation using Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON)</title><title>Acta astronautica</title><description>We study the application of Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) to track vehicles on the far side of the lunar surface. The LiAISON architecture is demonstrated to achieve accurate orbit determination solutions for various mission scenarios in the Earth–Moon system. Given the proper description of the force field, LiAISON is capable of producing absolute orbit determination solutions using relative satellite-to-satellite tracking observations alone. The lack of direct communication between Earth-based tracking stations and the far side of the Moon provides an ideal opportunity for implementing LiAISON. This paper presents a novel approach to use the LiAISON architecture to perform autonomous navigation of assets on the lunar far side surface. Relative measurements between a spacecraft placed in an EML-2 halo orbit and lunar surface asset(s) are simulated and processed. Comprehensive simulation results show that absolute states of the surface assets are observable with an achieved accuracy of the position estimate on the order of tens of meters. •We study a new navigation method to track landers/rovers on the lunar surface.•Relative measurements between a halo orbiter and surface assets are processed.•We achieved accuracies on the order of tens of meters on the lunar far side surface.•Navigation performance depends on the size of configuration of the halo orbit.</description><subject>Architecture</subject><subject>Autonomous</subject><subject>LiAISON</subject><subject>Lunar far side</subject><subject>Lunar surface</subject><subject>Navigation</subject><subject>Orbit determination</subject><subject>Satellite orbits</subject><subject>Simulation</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkUtPwzAQhC0EEuXxG_ARDgnrPOzkWCEelSJ6AM6W46yRS-sU20Hi3-OqCI5wWO1lZjSjj5ALBjkDxq9XudJRqRD9mBfA6hxEDoU4IDPWiDYroIRDMgNoq6wWvD4mJyGsAEAUTTsjm25yylOTLtgBaZi8URqpUx_2VUU7OjoF615pZ90bDnQ-xdGNm3EKdOEi-u1aOYzKf9InFXG9thHp0vc20sffhMvOzhdPy8erM3Jk1Drg-fc_JS93t883D1m3vF_czLtMlw2LGepCN1ggaoNQYguDqSrd9wMwxqDGXmFVQtm0LVMt8ga56lVv6pprwQ2Y8pRc7nO3fnyfMES5sUGneqlsqi6ZEFAWjJXNP6QVbwTnXCSp2Eu1H0PwaOTW203aLhnIHQu5kj8s5I6FBCETi-Sc752YRn9Y9DJoi07jYD3qKIfR_pnxBVyUmP0</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Hesar, Siamak G.</creator><creator>Parker, Jeffrey S.</creator><creator>Leonard, Jason M.</creator><creator>McGranaghan, Ryan M.</creator><creator>Born, George H.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9605-0007</orcidid></search><sort><creationdate>20151201</creationdate><title>Lunar far side surface navigation using Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON)</title><author>Hesar, Siamak G. ; Parker, Jeffrey S. ; Leonard, Jason M. ; McGranaghan, Ryan M. ; Born, George H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-ec2c8e2eecfe03e90df44cbbd011105ebae43038991a9e68e6ababf556c76f0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Architecture</topic><topic>Autonomous</topic><topic>LiAISON</topic><topic>Lunar far side</topic><topic>Lunar surface</topic><topic>Navigation</topic><topic>Orbit determination</topic><topic>Satellite orbits</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hesar, Siamak G.</creatorcontrib><creatorcontrib>Parker, Jeffrey S.</creatorcontrib><creatorcontrib>Leonard, Jason M.</creatorcontrib><creatorcontrib>McGranaghan, Ryan M.</creatorcontrib><creatorcontrib>Born, George H.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hesar, Siamak G.</au><au>Parker, Jeffrey S.</au><au>Leonard, Jason M.</au><au>McGranaghan, Ryan M.</au><au>Born, George H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lunar far side surface navigation using Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON)</atitle><jtitle>Acta astronautica</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>117</volume><spage>116</spage><epage>129</epage><pages>116-129</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>We study the application of Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) to track vehicles on the far side of the lunar surface. The LiAISON architecture is demonstrated to achieve accurate orbit determination solutions for various mission scenarios in the Earth–Moon system. Given the proper description of the force field, LiAISON is capable of producing absolute orbit determination solutions using relative satellite-to-satellite tracking observations alone. The lack of direct communication between Earth-based tracking stations and the far side of the Moon provides an ideal opportunity for implementing LiAISON. This paper presents a novel approach to use the LiAISON architecture to perform autonomous navigation of assets on the lunar far side surface. Relative measurements between a spacecraft placed in an EML-2 halo orbit and lunar surface asset(s) are simulated and processed. Comprehensive simulation results show that absolute states of the surface assets are observable with an achieved accuracy of the position estimate on the order of tens of meters. •We study a new navigation method to track landers/rovers on the lunar surface.•Relative measurements between a halo orbiter and surface assets are processed.•We achieved accuracies on the order of tens of meters on the lunar far side surface.•Navigation performance depends on the size of configuration of the halo orbit.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2015.07.027</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9605-0007</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2015-12, Vol.117, p.116-129
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_miscellaneous_1770321138
source Elsevier ScienceDirect Journals Complete
subjects Architecture
Autonomous
LiAISON
Lunar far side
Lunar surface
Navigation
Orbit determination
Satellite orbits
Simulation
title Lunar far side surface navigation using Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lunar%20far%20side%20surface%20navigation%20using%20Linked%20Autonomous%20Interplanetary%20Satellite%20Orbit%20Navigation%20(LiAISON)&rft.jtitle=Acta%20astronautica&rft.au=Hesar,%20Siamak%20G.&rft.date=2015-12-01&rft.volume=117&rft.spage=116&rft.epage=129&rft.pages=116-129&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2015.07.027&rft_dat=%3Cproquest_cross%3E1770321138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1746876667&rft_id=info:pmid/&rft_els_id=S0094576515003082&rfr_iscdi=true