Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix
Abstract Cells are known to respond to multiple niche signals including extracellular matrix and mechanical loading. In others and our own studies, mechanical loading has been shown to induce the formation of cell alignment in 3D collagen matrix with random meshwork, challenging our traditional unde...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2015-06, Vol.53, p.392-405 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 405 |
---|---|
container_issue | |
container_start_page | 392 |
container_title | Biomaterials |
container_volume | 53 |
creator | Ho, Fu Chak Zhang, Wei Li, Yuk Yin Chan, Barbara Pui |
description | Abstract Cells are known to respond to multiple niche signals including extracellular matrix and mechanical loading. In others and our own studies, mechanical loading has been shown to induce the formation of cell alignment in 3D collagen matrix with random meshwork, challenging our traditional understanding on the necessity of having aligned substrates as the prerequisite of alignment formation. This motivates our adventure in deciphering the mechanism of loading-induced cell alignment and hence the discovery of the novel protrusive functional structure at the cell–matrix interface. Here we report the formation of mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells (hMSCs) microencapsulated in collagen following a shifted actin assembly/disassembly balance. These actin protrusive structures exhibit morphological and compositional similarity to filopodia and invadopodia but differ from them in stability, abundance, signaling and function. Without ruling out the possibility that these structures may comprise special subsets of filopodia and invadopodia, we propose to name them as mechanopodia so as to reveal their mechano-inductive mechanism. We also suggest that more intensive investigations are needed to delineate the functional significance and physiological relevance of these structures. This work identifies a brand new target for cell–matrix interaction and mechanoregulation studies. |
doi_str_mv | 10.1016/j.biomaterials.2015.02.102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770319588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961215002409</els_id><sourcerecordid>1770319588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-4af97c4fff9ba6cfc42ff3b9d7499c4eb4c0191af8d7882c00e3efa17d38c7ee3</originalsourceid><addsrcrecordid>eNqNks9u1DAQxi0EotvCKyCLEwey-E8S2xyQqpYCUhEH4Gw5znjXS2IvdlKxr8LT4mgXhLjQk23N75vxzDcIPadkTQltX-3WnY-jmSB5M-Q1I7RZE1Zi7AFaUSlk1SjSPEQrQmtWqZayM3Se846UN6nZY3TGGqmI4GKFfn4EuzUhJsj7GLK_g5c4jsFXvU9gJx-DGbAJPR6iLbdSNfkfVQ-bZHofNtgUJuB9ilOac6EzLs_tPJqAR8gQ7PYwFl2eYMQWhiHj0dsUS8Ds8zyUJvpFYTC_xjYOg9lAOFV5gh650h88PZ0X6OvN2y9X76vbT-8-XF3eVrZpxVTVxilha-ec6kxrna2Zc7xTvaiVsjV0tSVUUeNkL6RklhDg4AwVPZdWAPAL9OKYt3TxfYY86dHn5a8mQJyzpkIQTlUj5T1QziRjXNH_o62oW6kawgv6-oiWweScwOl98qNJB02JXhzXO_2343pxXBNWYqyIn53qzN0I_R_pb4sLcH0EoMzwzkPS2foyfzg6rPvo71fnzT9p7OCDL0vxDQ6Qd3FOYdFQnZkm-vOye8vq0YYQVhPFfwGML9zW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674689503</pqid></control><display><type>article</type><title>Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ho, Fu Chak ; Zhang, Wei ; Li, Yuk Yin ; Chan, Barbara Pui</creator><creatorcontrib>Ho, Fu Chak ; Zhang, Wei ; Li, Yuk Yin ; Chan, Barbara Pui</creatorcontrib><description>Abstract Cells are known to respond to multiple niche signals including extracellular matrix and mechanical loading. In others and our own studies, mechanical loading has been shown to induce the formation of cell alignment in 3D collagen matrix with random meshwork, challenging our traditional understanding on the necessity of having aligned substrates as the prerequisite of alignment formation. This motivates our adventure in deciphering the mechanism of loading-induced cell alignment and hence the discovery of the novel protrusive functional structure at the cell–matrix interface. Here we report the formation of mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells (hMSCs) microencapsulated in collagen following a shifted actin assembly/disassembly balance. These actin protrusive structures exhibit morphological and compositional similarity to filopodia and invadopodia but differ from them in stability, abundance, signaling and function. Without ruling out the possibility that these structures may comprise special subsets of filopodia and invadopodia, we propose to name them as mechanopodia so as to reveal their mechano-inductive mechanism. We also suggest that more intensive investigations are needed to delineate the functional significance and physiological relevance of these structures. This work identifies a brand new target for cell–matrix interaction and mechanoregulation studies.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.02.102</identifier><identifier>PMID: 25890737</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Actin protrusions ; Advanced Basic Science ; Alignment ; Biomedical materials ; cdc42 GTP-Binding Protein - metabolism ; Cells, Cultured ; Cell–matrix interface ; Collagen - administration & dosage ; Collagen microencapsulation ; Collagens ; Dentistry ; Drug Compounding ; Extracellular Matrix - metabolism ; Formations ; Human ; Human mesenchymal stem cells ; Humans ; Mechanopodia ; Mechanoresponsive ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; Signal Transduction ; Similarity ; Stem cells ; Three dimensional</subject><ispartof>Biomaterials, 2015-06, Vol.53, p.392-405</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-4af97c4fff9ba6cfc42ff3b9d7499c4eb4c0191af8d7882c00e3efa17d38c7ee3</citedby><cites>FETCH-LOGICAL-c567t-4af97c4fff9ba6cfc42ff3b9d7499c4eb4c0191af8d7882c00e3efa17d38c7ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2015.02.102$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25890737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, Fu Chak</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Li, Yuk Yin</creatorcontrib><creatorcontrib>Chan, Barbara Pui</creatorcontrib><title>Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Cells are known to respond to multiple niche signals including extracellular matrix and mechanical loading. In others and our own studies, mechanical loading has been shown to induce the formation of cell alignment in 3D collagen matrix with random meshwork, challenging our traditional understanding on the necessity of having aligned substrates as the prerequisite of alignment formation. This motivates our adventure in deciphering the mechanism of loading-induced cell alignment and hence the discovery of the novel protrusive functional structure at the cell–matrix interface. Here we report the formation of mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells (hMSCs) microencapsulated in collagen following a shifted actin assembly/disassembly balance. These actin protrusive structures exhibit morphological and compositional similarity to filopodia and invadopodia but differ from them in stability, abundance, signaling and function. Without ruling out the possibility that these structures may comprise special subsets of filopodia and invadopodia, we propose to name them as mechanopodia so as to reveal their mechano-inductive mechanism. We also suggest that more intensive investigations are needed to delineate the functional significance and physiological relevance of these structures. This work identifies a brand new target for cell–matrix interaction and mechanoregulation studies.</description><subject>Actin protrusions</subject><subject>Advanced Basic Science</subject><subject>Alignment</subject><subject>Biomedical materials</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cells, Cultured</subject><subject>Cell–matrix interface</subject><subject>Collagen - administration & dosage</subject><subject>Collagen microencapsulation</subject><subject>Collagens</subject><subject>Dentistry</subject><subject>Drug Compounding</subject><subject>Extracellular Matrix - metabolism</subject><subject>Formations</subject><subject>Human</subject><subject>Human mesenchymal stem cells</subject><subject>Humans</subject><subject>Mechanopodia</subject><subject>Mechanoresponsive</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Signal Transduction</subject><subject>Similarity</subject><subject>Stem cells</subject><subject>Three dimensional</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9u1DAQxi0EotvCKyCLEwey-E8S2xyQqpYCUhEH4Gw5znjXS2IvdlKxr8LT4mgXhLjQk23N75vxzDcIPadkTQltX-3WnY-jmSB5M-Q1I7RZE1Zi7AFaUSlk1SjSPEQrQmtWqZayM3Se846UN6nZY3TGGqmI4GKFfn4EuzUhJsj7GLK_g5c4jsFXvU9gJx-DGbAJPR6iLbdSNfkfVQ-bZHofNtgUJuB9ilOac6EzLs_tPJqAR8gQ7PYwFl2eYMQWhiHj0dsUS8Ds8zyUJvpFYTC_xjYOg9lAOFV5gh650h88PZ0X6OvN2y9X76vbT-8-XF3eVrZpxVTVxilha-ec6kxrna2Zc7xTvaiVsjV0tSVUUeNkL6RklhDg4AwVPZdWAPAL9OKYt3TxfYY86dHn5a8mQJyzpkIQTlUj5T1QziRjXNH_o62oW6kawgv6-oiWweScwOl98qNJB02JXhzXO_2343pxXBNWYqyIn53qzN0I_R_pb4sLcH0EoMzwzkPS2foyfzg6rPvo71fnzT9p7OCDL0vxDQ6Qd3FOYdFQnZkm-vOye8vq0YYQVhPFfwGML9zW</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Ho, Fu Chak</creator><creator>Zhang, Wei</creator><creator>Li, Yuk Yin</creator><creator>Chan, Barbara Pui</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150601</creationdate><title>Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix</title><author>Ho, Fu Chak ; Zhang, Wei ; Li, Yuk Yin ; Chan, Barbara Pui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-4af97c4fff9ba6cfc42ff3b9d7499c4eb4c0191af8d7882c00e3efa17d38c7ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Actin protrusions</topic><topic>Advanced Basic Science</topic><topic>Alignment</topic><topic>Biomedical materials</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cells, Cultured</topic><topic>Cell–matrix interface</topic><topic>Collagen - administration & dosage</topic><topic>Collagen microencapsulation</topic><topic>Collagens</topic><topic>Dentistry</topic><topic>Drug Compounding</topic><topic>Extracellular Matrix - metabolism</topic><topic>Formations</topic><topic>Human</topic><topic>Human mesenchymal stem cells</topic><topic>Humans</topic><topic>Mechanopodia</topic><topic>Mechanoresponsive</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Signal Transduction</topic><topic>Similarity</topic><topic>Stem cells</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Fu Chak</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Li, Yuk Yin</creatorcontrib><creatorcontrib>Chan, Barbara Pui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Fu Chak</au><au>Zhang, Wei</au><au>Li, Yuk Yin</au><au>Chan, Barbara Pui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>53</volume><spage>392</spage><epage>405</epage><pages>392-405</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Cells are known to respond to multiple niche signals including extracellular matrix and mechanical loading. In others and our own studies, mechanical loading has been shown to induce the formation of cell alignment in 3D collagen matrix with random meshwork, challenging our traditional understanding on the necessity of having aligned substrates as the prerequisite of alignment formation. This motivates our adventure in deciphering the mechanism of loading-induced cell alignment and hence the discovery of the novel protrusive functional structure at the cell–matrix interface. Here we report the formation of mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells (hMSCs) microencapsulated in collagen following a shifted actin assembly/disassembly balance. These actin protrusive structures exhibit morphological and compositional similarity to filopodia and invadopodia but differ from them in stability, abundance, signaling and function. Without ruling out the possibility that these structures may comprise special subsets of filopodia and invadopodia, we propose to name them as mechanopodia so as to reveal their mechano-inductive mechanism. We also suggest that more intensive investigations are needed to delineate the functional significance and physiological relevance of these structures. This work identifies a brand new target for cell–matrix interaction and mechanoregulation studies.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25890737</pmid><doi>10.1016/j.biomaterials.2015.02.102</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2015-06, Vol.53, p.392-405 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770319588 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Actin protrusions Advanced Basic Science Alignment Biomedical materials cdc42 GTP-Binding Protein - metabolism Cells, Cultured Cell–matrix interface Collagen - administration & dosage Collagen microencapsulation Collagens Dentistry Drug Compounding Extracellular Matrix - metabolism Formations Human Human mesenchymal stem cells Humans Mechanopodia Mechanoresponsive Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - metabolism Signal Transduction Similarity Stem cells Three dimensional |
title | Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanoresponsive,%20omni-directional%20and%20local%20matrix-degrading%20actin%20protrusions%20in%20human%20mesenchymal%20stem%20cells%20microencapsulated%20in%20a%203D%20collagen%20matrix&rft.jtitle=Biomaterials&rft.au=Ho,%20Fu%20Chak&rft.date=2015-06-01&rft.volume=53&rft.spage=392&rft.epage=405&rft.pages=392-405&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.02.102&rft_dat=%3Cproquest_cross%3E1770319588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674689503&rft_id=info:pmid/25890737&rft_els_id=1_s2_0_S0142961215002409&rfr_iscdi=true |