Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix

Abstract Cells are known to respond to multiple niche signals including extracellular matrix and mechanical loading. In others and our own studies, mechanical loading has been shown to induce the formation of cell alignment in 3D collagen matrix with random meshwork, challenging our traditional unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2015-06, Vol.53, p.392-405
Hauptverfasser: Ho, Fu Chak, Zhang, Wei, Li, Yuk Yin, Chan, Barbara Pui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 405
container_issue
container_start_page 392
container_title Biomaterials
container_volume 53
creator Ho, Fu Chak
Zhang, Wei
Li, Yuk Yin
Chan, Barbara Pui
description Abstract Cells are known to respond to multiple niche signals including extracellular matrix and mechanical loading. In others and our own studies, mechanical loading has been shown to induce the formation of cell alignment in 3D collagen matrix with random meshwork, challenging our traditional understanding on the necessity of having aligned substrates as the prerequisite of alignment formation. This motivates our adventure in deciphering the mechanism of loading-induced cell alignment and hence the discovery of the novel protrusive functional structure at the cell–matrix interface. Here we report the formation of mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells (hMSCs) microencapsulated in collagen following a shifted actin assembly/disassembly balance. These actin protrusive structures exhibit morphological and compositional similarity to filopodia and invadopodia but differ from them in stability, abundance, signaling and function. Without ruling out the possibility that these structures may comprise special subsets of filopodia and invadopodia, we propose to name them as mechanopodia so as to reveal their mechano-inductive mechanism. We also suggest that more intensive investigations are needed to delineate the functional significance and physiological relevance of these structures. This work identifies a brand new target for cell–matrix interaction and mechanoregulation studies.
doi_str_mv 10.1016/j.biomaterials.2015.02.102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770319588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961215002409</els_id><sourcerecordid>1770319588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-4af97c4fff9ba6cfc42ff3b9d7499c4eb4c0191af8d7882c00e3efa17d38c7ee3</originalsourceid><addsrcrecordid>eNqNks9u1DAQxi0EotvCKyCLEwey-E8S2xyQqpYCUhEH4Gw5znjXS2IvdlKxr8LT4mgXhLjQk23N75vxzDcIPadkTQltX-3WnY-jmSB5M-Q1I7RZE1Zi7AFaUSlk1SjSPEQrQmtWqZayM3Se846UN6nZY3TGGqmI4GKFfn4EuzUhJsj7GLK_g5c4jsFXvU9gJx-DGbAJPR6iLbdSNfkfVQ-bZHofNtgUJuB9ilOac6EzLs_tPJqAR8gQ7PYwFl2eYMQWhiHj0dsUS8Ds8zyUJvpFYTC_xjYOg9lAOFV5gh650h88PZ0X6OvN2y9X76vbT-8-XF3eVrZpxVTVxilha-ec6kxrna2Zc7xTvaiVsjV0tSVUUeNkL6RklhDg4AwVPZdWAPAL9OKYt3TxfYY86dHn5a8mQJyzpkIQTlUj5T1QziRjXNH_o62oW6kawgv6-oiWweScwOl98qNJB02JXhzXO_2343pxXBNWYqyIn53qzN0I_R_pb4sLcH0EoMzwzkPS2foyfzg6rPvo71fnzT9p7OCDL0vxDQ6Qd3FOYdFQnZkm-vOye8vq0YYQVhPFfwGML9zW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674689503</pqid></control><display><type>article</type><title>Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ho, Fu Chak ; Zhang, Wei ; Li, Yuk Yin ; Chan, Barbara Pui</creator><creatorcontrib>Ho, Fu Chak ; Zhang, Wei ; Li, Yuk Yin ; Chan, Barbara Pui</creatorcontrib><description>Abstract Cells are known to respond to multiple niche signals including extracellular matrix and mechanical loading. In others and our own studies, mechanical loading has been shown to induce the formation of cell alignment in 3D collagen matrix with random meshwork, challenging our traditional understanding on the necessity of having aligned substrates as the prerequisite of alignment formation. This motivates our adventure in deciphering the mechanism of loading-induced cell alignment and hence the discovery of the novel protrusive functional structure at the cell–matrix interface. Here we report the formation of mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells (hMSCs) microencapsulated in collagen following a shifted actin assembly/disassembly balance. These actin protrusive structures exhibit morphological and compositional similarity to filopodia and invadopodia but differ from them in stability, abundance, signaling and function. Without ruling out the possibility that these structures may comprise special subsets of filopodia and invadopodia, we propose to name them as mechanopodia so as to reveal their mechano-inductive mechanism. We also suggest that more intensive investigations are needed to delineate the functional significance and physiological relevance of these structures. This work identifies a brand new target for cell–matrix interaction and mechanoregulation studies.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2015.02.102</identifier><identifier>PMID: 25890737</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Actin protrusions ; Advanced Basic Science ; Alignment ; Biomedical materials ; cdc42 GTP-Binding Protein - metabolism ; Cells, Cultured ; Cell–matrix interface ; Collagen - administration &amp; dosage ; Collagen microencapsulation ; Collagens ; Dentistry ; Drug Compounding ; Extracellular Matrix - metabolism ; Formations ; Human ; Human mesenchymal stem cells ; Humans ; Mechanopodia ; Mechanoresponsive ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; Signal Transduction ; Similarity ; Stem cells ; Three dimensional</subject><ispartof>Biomaterials, 2015-06, Vol.53, p.392-405</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-4af97c4fff9ba6cfc42ff3b9d7499c4eb4c0191af8d7882c00e3efa17d38c7ee3</citedby><cites>FETCH-LOGICAL-c567t-4af97c4fff9ba6cfc42ff3b9d7499c4eb4c0191af8d7882c00e3efa17d38c7ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2015.02.102$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25890737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, Fu Chak</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Li, Yuk Yin</creatorcontrib><creatorcontrib>Chan, Barbara Pui</creatorcontrib><title>Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Cells are known to respond to multiple niche signals including extracellular matrix and mechanical loading. In others and our own studies, mechanical loading has been shown to induce the formation of cell alignment in 3D collagen matrix with random meshwork, challenging our traditional understanding on the necessity of having aligned substrates as the prerequisite of alignment formation. This motivates our adventure in deciphering the mechanism of loading-induced cell alignment and hence the discovery of the novel protrusive functional structure at the cell–matrix interface. Here we report the formation of mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells (hMSCs) microencapsulated in collagen following a shifted actin assembly/disassembly balance. These actin protrusive structures exhibit morphological and compositional similarity to filopodia and invadopodia but differ from them in stability, abundance, signaling and function. Without ruling out the possibility that these structures may comprise special subsets of filopodia and invadopodia, we propose to name them as mechanopodia so as to reveal their mechano-inductive mechanism. We also suggest that more intensive investigations are needed to delineate the functional significance and physiological relevance of these structures. This work identifies a brand new target for cell–matrix interaction and mechanoregulation studies.</description><subject>Actin protrusions</subject><subject>Advanced Basic Science</subject><subject>Alignment</subject><subject>Biomedical materials</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cells, Cultured</subject><subject>Cell–matrix interface</subject><subject>Collagen - administration &amp; dosage</subject><subject>Collagen microencapsulation</subject><subject>Collagens</subject><subject>Dentistry</subject><subject>Drug Compounding</subject><subject>Extracellular Matrix - metabolism</subject><subject>Formations</subject><subject>Human</subject><subject>Human mesenchymal stem cells</subject><subject>Humans</subject><subject>Mechanopodia</subject><subject>Mechanoresponsive</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Signal Transduction</subject><subject>Similarity</subject><subject>Stem cells</subject><subject>Three dimensional</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9u1DAQxi0EotvCKyCLEwey-E8S2xyQqpYCUhEH4Gw5znjXS2IvdlKxr8LT4mgXhLjQk23N75vxzDcIPadkTQltX-3WnY-jmSB5M-Q1I7RZE1Zi7AFaUSlk1SjSPEQrQmtWqZayM3Se846UN6nZY3TGGqmI4GKFfn4EuzUhJsj7GLK_g5c4jsFXvU9gJx-DGbAJPR6iLbdSNfkfVQ-bZHofNtgUJuB9ilOac6EzLs_tPJqAR8gQ7PYwFl2eYMQWhiHj0dsUS8Ds8zyUJvpFYTC_xjYOg9lAOFV5gh650h88PZ0X6OvN2y9X76vbT-8-XF3eVrZpxVTVxilha-ec6kxrna2Zc7xTvaiVsjV0tSVUUeNkL6RklhDg4AwVPZdWAPAL9OKYt3TxfYY86dHn5a8mQJyzpkIQTlUj5T1QziRjXNH_o62oW6kawgv6-oiWweScwOl98qNJB02JXhzXO_2343pxXBNWYqyIn53qzN0I_R_pb4sLcH0EoMzwzkPS2foyfzg6rPvo71fnzT9p7OCDL0vxDQ6Qd3FOYdFQnZkm-vOye8vq0YYQVhPFfwGML9zW</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Ho, Fu Chak</creator><creator>Zhang, Wei</creator><creator>Li, Yuk Yin</creator><creator>Chan, Barbara Pui</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150601</creationdate><title>Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix</title><author>Ho, Fu Chak ; Zhang, Wei ; Li, Yuk Yin ; Chan, Barbara Pui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-4af97c4fff9ba6cfc42ff3b9d7499c4eb4c0191af8d7882c00e3efa17d38c7ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Actin protrusions</topic><topic>Advanced Basic Science</topic><topic>Alignment</topic><topic>Biomedical materials</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cells, Cultured</topic><topic>Cell–matrix interface</topic><topic>Collagen - administration &amp; dosage</topic><topic>Collagen microencapsulation</topic><topic>Collagens</topic><topic>Dentistry</topic><topic>Drug Compounding</topic><topic>Extracellular Matrix - metabolism</topic><topic>Formations</topic><topic>Human</topic><topic>Human mesenchymal stem cells</topic><topic>Humans</topic><topic>Mechanopodia</topic><topic>Mechanoresponsive</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Signal Transduction</topic><topic>Similarity</topic><topic>Stem cells</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Fu Chak</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Li, Yuk Yin</creatorcontrib><creatorcontrib>Chan, Barbara Pui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Fu Chak</au><au>Zhang, Wei</au><au>Li, Yuk Yin</au><au>Chan, Barbara Pui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>53</volume><spage>392</spage><epage>405</epage><pages>392-405</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Cells are known to respond to multiple niche signals including extracellular matrix and mechanical loading. In others and our own studies, mechanical loading has been shown to induce the formation of cell alignment in 3D collagen matrix with random meshwork, challenging our traditional understanding on the necessity of having aligned substrates as the prerequisite of alignment formation. This motivates our adventure in deciphering the mechanism of loading-induced cell alignment and hence the discovery of the novel protrusive functional structure at the cell–matrix interface. Here we report the formation of mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells (hMSCs) microencapsulated in collagen following a shifted actin assembly/disassembly balance. These actin protrusive structures exhibit morphological and compositional similarity to filopodia and invadopodia but differ from them in stability, abundance, signaling and function. Without ruling out the possibility that these structures may comprise special subsets of filopodia and invadopodia, we propose to name them as mechanopodia so as to reveal their mechano-inductive mechanism. We also suggest that more intensive investigations are needed to delineate the functional significance and physiological relevance of these structures. This work identifies a brand new target for cell–matrix interaction and mechanoregulation studies.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25890737</pmid><doi>10.1016/j.biomaterials.2015.02.102</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2015-06, Vol.53, p.392-405
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1770319588
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Actin protrusions
Advanced Basic Science
Alignment
Biomedical materials
cdc42 GTP-Binding Protein - metabolism
Cells, Cultured
Cell–matrix interface
Collagen - administration & dosage
Collagen microencapsulation
Collagens
Dentistry
Drug Compounding
Extracellular Matrix - metabolism
Formations
Human
Human mesenchymal stem cells
Humans
Mechanopodia
Mechanoresponsive
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
Signal Transduction
Similarity
Stem cells
Three dimensional
title Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanoresponsive,%20omni-directional%20and%20local%20matrix-degrading%20actin%20protrusions%20in%20human%20mesenchymal%20stem%20cells%20microencapsulated%20in%20a%203D%20collagen%20matrix&rft.jtitle=Biomaterials&rft.au=Ho,%20Fu%20Chak&rft.date=2015-06-01&rft.volume=53&rft.spage=392&rft.epage=405&rft.pages=392-405&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2015.02.102&rft_dat=%3Cproquest_cross%3E1770319588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674689503&rft_id=info:pmid/25890737&rft_els_id=1_s2_0_S0142961215002409&rfr_iscdi=true