Close proximity formation flying via linear quadratic tracking controller and artificial potential function

•An LQR-based controller is designed for relative motion near eccentric orbits.•An APF-based guidance law is developed for collision avoidance.•The controller and guidance law effectively accomplish collision-free maneuvers of multiple spacecraft. A Riccati-based tracking controller with collision a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research 2015-11, Vol.56 (10), p.2167-2176
Hauptverfasser: Palacios, Leonel, Ceriotti, Matteo, Radice, Gianmarco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2176
container_issue 10
container_start_page 2167
container_title Advances in space research
container_volume 56
creator Palacios, Leonel
Ceriotti, Matteo
Radice, Gianmarco
description •An LQR-based controller is designed for relative motion near eccentric orbits.•An APF-based guidance law is developed for collision avoidance.•The controller and guidance law effectively accomplish collision-free maneuvers of multiple spacecraft. A Riccati-based tracking controller with collision avoidance capabilities is presented for proximity operations of spacecraft formation flying near elliptic reference orbits. The proposed dynamical model incorporates nonlinear accelerations from an artificial potential field, in order to perform evasive maneuvers during proximity operations. In order to validate the design of the controller, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) will be implemented, extending it to scenarios with multiple spacecraft performing reconfigurations and on-orbit position switching. The results show that the tracking controller is effective, even when nonlinear repelling accelerations are present in the dynamics to avoid collisions, and that the potential-based collision avoidance scheme is convenient for reducing collision threat.
doi_str_mv 10.1016/j.asr.2015.09.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770317741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273117715006274</els_id><sourcerecordid>1732812270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-d0022811202450549170960fb6017363cdf1ac4b894fc6f4eb579509b60601e03</originalsourceid><addsrcrecordid>eNqNUUtrGzEQFqWBum5-QG469rLbGe1DFj0V0yYBQy7pWchaKciWJVuSTf3vq8U9l1xmBr4HM_MR8oDQIuD4bdeqnFoGOLQgWoDhA1ngiosGRb_6SBbAeNcgcv6JfM55B4CMc1iQ_drHbOgxxT_u4MqV2pgOqrgYqPVXF97oxSnqXTAq0dNZTamCmpak9H5GdQwlRe9NoipMVKXirNNOeXqMxYQyT_Yc9Oz4hdxZ5bO5_9eX5Pevn6_rp2bz8vi8_rFpdA9jaSYAxlaIDFg_wNAL5CBGsNsRkHdjpyeLSvfbleitHm1vtgMXA4iKV4aBbkm-3nzrVaezyUUeXNbGexVMPGdZvwBdLT2-g9rVVRjjsyveqDrFnJOx8pjcQaWrRJBzBnInawZyzkCCkDWDqvl-05h67sWZJLN2JmgzuWR0kVN0_1H_Bavoj5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732812270</pqid></control><display><type>article</type><title>Close proximity formation flying via linear quadratic tracking controller and artificial potential function</title><source>Access via ScienceDirect (Elsevier)</source><creator>Palacios, Leonel ; Ceriotti, Matteo ; Radice, Gianmarco</creator><creatorcontrib>Palacios, Leonel ; Ceriotti, Matteo ; Radice, Gianmarco</creatorcontrib><description>•An LQR-based controller is designed for relative motion near eccentric orbits.•An APF-based guidance law is developed for collision avoidance.•The controller and guidance law effectively accomplish collision-free maneuvers of multiple spacecraft. A Riccati-based tracking controller with collision avoidance capabilities is presented for proximity operations of spacecraft formation flying near elliptic reference orbits. The proposed dynamical model incorporates nonlinear accelerations from an artificial potential field, in order to perform evasive maneuvers during proximity operations. In order to validate the design of the controller, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) will be implemented, extending it to scenarios with multiple spacecraft performing reconfigurations and on-orbit position switching. The results show that the tracking controller is effective, even when nonlinear repelling accelerations are present in the dynamics to avoid collisions, and that the potential-based collision avoidance scheme is convenient for reducing collision threat.</description><identifier>ISSN: 0273-1177</identifier><identifier>EISSN: 1879-1948</identifier><identifier>DOI: 10.1016/j.asr.2015.09.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Acceleration ; Artificial potential functions ; Autonomous control ; Collision avoidance ; Collision dynamics ; Controllers ; Formation flying ; Nonlinearity ; Proximity ; Spacecraft ; Tracking control</subject><ispartof>Advances in space research, 2015-11, Vol.56 (10), p.2167-2176</ispartof><rights>2015 COSPAR</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-d0022811202450549170960fb6017363cdf1ac4b894fc6f4eb579509b60601e03</citedby><cites>FETCH-LOGICAL-c406t-d0022811202450549170960fb6017363cdf1ac4b894fc6f4eb579509b60601e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.asr.2015.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Palacios, Leonel</creatorcontrib><creatorcontrib>Ceriotti, Matteo</creatorcontrib><creatorcontrib>Radice, Gianmarco</creatorcontrib><title>Close proximity formation flying via linear quadratic tracking controller and artificial potential function</title><title>Advances in space research</title><description>•An LQR-based controller is designed for relative motion near eccentric orbits.•An APF-based guidance law is developed for collision avoidance.•The controller and guidance law effectively accomplish collision-free maneuvers of multiple spacecraft. A Riccati-based tracking controller with collision avoidance capabilities is presented for proximity operations of spacecraft formation flying near elliptic reference orbits. The proposed dynamical model incorporates nonlinear accelerations from an artificial potential field, in order to perform evasive maneuvers during proximity operations. In order to validate the design of the controller, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) will be implemented, extending it to scenarios with multiple spacecraft performing reconfigurations and on-orbit position switching. The results show that the tracking controller is effective, even when nonlinear repelling accelerations are present in the dynamics to avoid collisions, and that the potential-based collision avoidance scheme is convenient for reducing collision threat.</description><subject>Acceleration</subject><subject>Artificial potential functions</subject><subject>Autonomous control</subject><subject>Collision avoidance</subject><subject>Collision dynamics</subject><subject>Controllers</subject><subject>Formation flying</subject><subject>Nonlinearity</subject><subject>Proximity</subject><subject>Spacecraft</subject><subject>Tracking control</subject><issn>0273-1177</issn><issn>1879-1948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUUtrGzEQFqWBum5-QG469rLbGe1DFj0V0yYBQy7pWchaKciWJVuSTf3vq8U9l1xmBr4HM_MR8oDQIuD4bdeqnFoGOLQgWoDhA1ngiosGRb_6SBbAeNcgcv6JfM55B4CMc1iQ_drHbOgxxT_u4MqV2pgOqrgYqPVXF97oxSnqXTAq0dNZTamCmpak9H5GdQwlRe9NoipMVKXirNNOeXqMxYQyT_Yc9Oz4hdxZ5bO5_9eX5Pevn6_rp2bz8vi8_rFpdA9jaSYAxlaIDFg_wNAL5CBGsNsRkHdjpyeLSvfbleitHm1vtgMXA4iKV4aBbkm-3nzrVaezyUUeXNbGexVMPGdZvwBdLT2-g9rVVRjjsyveqDrFnJOx8pjcQaWrRJBzBnInawZyzkCCkDWDqvl-05h67sWZJLN2JmgzuWR0kVN0_1H_Bavoj5Y</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Palacios, Leonel</creator><creator>Ceriotti, Matteo</creator><creator>Radice, Gianmarco</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151101</creationdate><title>Close proximity formation flying via linear quadratic tracking controller and artificial potential function</title><author>Palacios, Leonel ; Ceriotti, Matteo ; Radice, Gianmarco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-d0022811202450549170960fb6017363cdf1ac4b894fc6f4eb579509b60601e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceleration</topic><topic>Artificial potential functions</topic><topic>Autonomous control</topic><topic>Collision avoidance</topic><topic>Collision dynamics</topic><topic>Controllers</topic><topic>Formation flying</topic><topic>Nonlinearity</topic><topic>Proximity</topic><topic>Spacecraft</topic><topic>Tracking control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacios, Leonel</creatorcontrib><creatorcontrib>Ceriotti, Matteo</creatorcontrib><creatorcontrib>Radice, Gianmarco</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advances in space research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacios, Leonel</au><au>Ceriotti, Matteo</au><au>Radice, Gianmarco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Close proximity formation flying via linear quadratic tracking controller and artificial potential function</atitle><jtitle>Advances in space research</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>56</volume><issue>10</issue><spage>2167</spage><epage>2176</epage><pages>2167-2176</pages><issn>0273-1177</issn><eissn>1879-1948</eissn><abstract>•An LQR-based controller is designed for relative motion near eccentric orbits.•An APF-based guidance law is developed for collision avoidance.•The controller and guidance law effectively accomplish collision-free maneuvers of multiple spacecraft. A Riccati-based tracking controller with collision avoidance capabilities is presented for proximity operations of spacecraft formation flying near elliptic reference orbits. The proposed dynamical model incorporates nonlinear accelerations from an artificial potential field, in order to perform evasive maneuvers during proximity operations. In order to validate the design of the controller, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) will be implemented, extending it to scenarios with multiple spacecraft performing reconfigurations and on-orbit position switching. The results show that the tracking controller is effective, even when nonlinear repelling accelerations are present in the dynamics to avoid collisions, and that the potential-based collision avoidance scheme is convenient for reducing collision threat.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.asr.2015.09.005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0273-1177
ispartof Advances in space research, 2015-11, Vol.56 (10), p.2167-2176
issn 0273-1177
1879-1948
language eng
recordid cdi_proquest_miscellaneous_1770317741
source Access via ScienceDirect (Elsevier)
subjects Acceleration
Artificial potential functions
Autonomous control
Collision avoidance
Collision dynamics
Controllers
Formation flying
Nonlinearity
Proximity
Spacecraft
Tracking control
title Close proximity formation flying via linear quadratic tracking controller and artificial potential function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Close%20proximity%20formation%20flying%20via%20linear%20quadratic%20tracking%20controller%20and%20artificial%20potential%20function&rft.jtitle=Advances%20in%20space%20research&rft.au=Palacios,%20Leonel&rft.date=2015-11-01&rft.volume=56&rft.issue=10&rft.spage=2167&rft.epage=2176&rft.pages=2167-2176&rft.issn=0273-1177&rft.eissn=1879-1948&rft_id=info:doi/10.1016/j.asr.2015.09.005&rft_dat=%3Cproquest_cross%3E1732812270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732812270&rft_id=info:pmid/&rft_els_id=S0273117715006274&rfr_iscdi=true