Low Temperature Combustion Optimization and Cycle-by-Cycle Variability Through Injection Optimization and Gas-to-Liquid Fuel-Blend Ratio

The advent of common rail technology alongside powerful control systems capable of delivering multiple accurate fuel charges during a single engine cycle has revolutionized the level of control possible in diesel combustion. This technology has opened a new path enabling low-temperature combustion (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2013-07, Vol.135 (7), p.1-7
Hauptverfasser: Michailidis, A. D, Stobart, R. K, McTaggart-Cowan, G. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The advent of common rail technology alongside powerful control systems capable of delivering multiple accurate fuel charges during a single engine cycle has revolutionized the level of control possible in diesel combustion. This technology has opened a new path enabling low-temperature combustion (LTC) to become a viable combustion strategy. The aim of the research work presented within this paper is the understanding of how various engine parameters of LTC optimize the combustion both in terms of emissions and in terms of fuel efficiency. The work continues with an investigation of in-cylinder pressure and IMEP cycle-by-cycle variation. Attention will be given to how repeatability changes throughout the combustion cycle, identifying which parts within the cycle are least likely to follow the mean trend and why. Experiments were conducted on a single-cylinder 510cc boosted diesel engine. LTC was affected over varying rail pressure and combustion phasing. Single and split injection regimes of varying dwell-times were investigated. All injection conditions were phased across several crank-angles to demonstrate the interaction between emissions and efficiency. These tests were then repeated with blends of 30% and 50% gas-to-liquid (GTL)-diesel blends in order to determine whether there is any change in the trends of repeatability and variance with increasing GTL blend ratio. The experiments were evaluated in terms of emissions, fuel efficiency, and cyclic behavior. Specific attention was given to how the NOx-PM trade-off changes through increased injection complexity and increasing GTL blend ratio. The cyclic behavior was analyzed in terms of in-cylinder pressure standard deviation. This gives a behavior profile of the repeatability of in-cylinder pressure in comparison to the mean. Each condition was then compared to the behavior of equivalent injection conditions in conventional diesel combustion. Short-dwell split injection was shown to be beneficial for LTC, while NOx was shown to be reduced by the substitution of GTL in the fuel. In-cylinder pressure cyclic behavior was also shown to be comparable or superior to conventional combustion in every case examined. GTL improved this further, but not in proportion to its blend ratio.
ISSN:0742-4795
1528-8919
DOI:10.1115/1.4024090