A Temperature Dependent, Single Particle, Lithium Ion Cell Model Including Electrolyte Diffusion
Low-order, explicit models of lithium ion cells are critical for real-time battery management system (BMS) applications. This paper presents a seventh-order, electrolyte enhanced single particle model (ESPM) with electrolyte diffusion and temperature dependent parameters (ESPM-T). The impedance tran...
Gespeichert in:
Veröffentlicht in: | Journal of dynamic systems, measurement, and control measurement, and control, 2015-01, Vol.137 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of dynamic systems, measurement, and control |
container_volume | 137 |
creator | Tanim, Tanvir R Rahn, Christopher D Wang, Chao-Yang |
description | Low-order, explicit models of lithium ion cells are critical for real-time battery management system (BMS) applications. This paper presents a seventh-order, electrolyte enhanced single particle model (ESPM) with electrolyte diffusion and temperature dependent parameters (ESPM-T). The impedance transfer function coefficients are explicit in terms of the model parameters, simplifying the implementation of temperature dependence. The ESPM-T model is compared with a commercially available finite volume based model and results show accurate matching of pulse responses over a wide range of temperature (T) and C-rates (I). The voltage response to 30 s pulse charge–discharge current inputs is within 5% of the commercial code for 25 °C |
doi_str_mv | 10.1115/1.4028154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770311942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770311942</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-1fc4b2675fda76baa7ea94c1e0d0e2312ba6591401cbfb6cbd5cf24e5512a5b33</originalsourceid><addsrcrecordid>eNot0D1PwzAQBmALgUQpDMwsHkFqis8fSTNWpUClIpAos3GcC6RynGAnQ_89QWU6nfTo1d1LyDWwOQCoe5hLxheg5AmZgOKLJB_XUzJhjPOESSHPyUWMe8ZACJVOyOeS7rDpMJh-CEgfsENfou9n9L32Xw7pmwl9bR3O6Lbuv-uhoZvW0xU6R1_aEh3deOuGcsR07dD2oXWHfgyqq2qIdesvyVllXMSr_zklH4_r3eo52b4-bVbLbWLEIu8TqKwseJqpqjRZWhiTocmlBWQlQy6AFyZVOUgGtqiK1BalshWXqBRwowohpuT2mNuF9mfA2OumjnY803hsh6ghy5gAyCUf6d2R2tDGGLDSXagbEw4amP5rUYP-b3G0N0drYoN63w7Bj19omQklUvELmJxtXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770311942</pqid></control><display><type>article</type><title>A Temperature Dependent, Single Particle, Lithium Ion Cell Model Including Electrolyte Diffusion</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Tanim, Tanvir R ; Rahn, Christopher D ; Wang, Chao-Yang</creator><creatorcontrib>Tanim, Tanvir R ; Rahn, Christopher D ; Wang, Chao-Yang</creatorcontrib><description>Low-order, explicit models of lithium ion cells are critical for real-time battery management system (BMS) applications. This paper presents a seventh-order, electrolyte enhanced single particle model (ESPM) with electrolyte diffusion and temperature dependent parameters (ESPM-T). The impedance transfer function coefficients are explicit in terms of the model parameters, simplifying the implementation of temperature dependence. The ESPM-T model is compared with a commercially available finite volume based model and results show accurate matching of pulse responses over a wide range of temperature (T) and C-rates (I). The voltage response to 30 s pulse charge–discharge current inputs is within 5% of the commercial code for 25 °C<T<50 °C at I≤12.5C and -10 °C<T<50°C at I≤1C for a graphite/nickel cobalt manganese (NCM) lithium ion cell.</description><identifier>ISSN: 0022-0434</identifier><identifier>EISSN: 1528-9028</identifier><identifier>DOI: 10.1115/1.4028154</identifier><language>eng</language><publisher>ASME</publisher><subject>Diffusion ; Dynamical systems ; Dynamics ; Electric cells ; Electric potential ; Electrolytes ; Lithium batteries ; Mathematical models</subject><ispartof>Journal of dynamic systems, measurement, and control, 2015-01, Vol.137 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-1fc4b2675fda76baa7ea94c1e0d0e2312ba6591401cbfb6cbd5cf24e5512a5b33</citedby><cites>FETCH-LOGICAL-a389t-1fc4b2675fda76baa7ea94c1e0d0e2312ba6591401cbfb6cbd5cf24e5512a5b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912,38507</link.rule.ids></links><search><creatorcontrib>Tanim, Tanvir R</creatorcontrib><creatorcontrib>Rahn, Christopher D</creatorcontrib><creatorcontrib>Wang, Chao-Yang</creatorcontrib><title>A Temperature Dependent, Single Particle, Lithium Ion Cell Model Including Electrolyte Diffusion</title><title>Journal of dynamic systems, measurement, and control</title><addtitle>J. Dyn. Sys., Meas., Control</addtitle><description>Low-order, explicit models of lithium ion cells are critical for real-time battery management system (BMS) applications. This paper presents a seventh-order, electrolyte enhanced single particle model (ESPM) with electrolyte diffusion and temperature dependent parameters (ESPM-T). The impedance transfer function coefficients are explicit in terms of the model parameters, simplifying the implementation of temperature dependence. The ESPM-T model is compared with a commercially available finite volume based model and results show accurate matching of pulse responses over a wide range of temperature (T) and C-rates (I). The voltage response to 30 s pulse charge–discharge current inputs is within 5% of the commercial code for 25 °C<T<50 °C at I≤12.5C and -10 °C<T<50°C at I≤1C for a graphite/nickel cobalt manganese (NCM) lithium ion cell.</description><subject>Diffusion</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electric cells</subject><subject>Electric potential</subject><subject>Electrolytes</subject><subject>Lithium batteries</subject><subject>Mathematical models</subject><issn>0022-0434</issn><issn>1528-9028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNot0D1PwzAQBmALgUQpDMwsHkFqis8fSTNWpUClIpAos3GcC6RynGAnQ_89QWU6nfTo1d1LyDWwOQCoe5hLxheg5AmZgOKLJB_XUzJhjPOESSHPyUWMe8ZACJVOyOeS7rDpMJh-CEgfsENfou9n9L32Xw7pmwl9bR3O6Lbuv-uhoZvW0xU6R1_aEh3deOuGcsR07dD2oXWHfgyqq2qIdesvyVllXMSr_zklH4_r3eo52b4-bVbLbWLEIu8TqKwseJqpqjRZWhiTocmlBWQlQy6AFyZVOUgGtqiK1BalshWXqBRwowohpuT2mNuF9mfA2OumjnY803hsh6ghy5gAyCUf6d2R2tDGGLDSXagbEw4amP5rUYP-b3G0N0drYoN63w7Bj19omQklUvELmJxtXw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Tanim, Tanvir R</creator><creator>Rahn, Christopher D</creator><creator>Wang, Chao-Yang</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150101</creationdate><title>A Temperature Dependent, Single Particle, Lithium Ion Cell Model Including Electrolyte Diffusion</title><author>Tanim, Tanvir R ; Rahn, Christopher D ; Wang, Chao-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-1fc4b2675fda76baa7ea94c1e0d0e2312ba6591401cbfb6cbd5cf24e5512a5b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Diffusion</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electric cells</topic><topic>Electric potential</topic><topic>Electrolytes</topic><topic>Lithium batteries</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanim, Tanvir R</creatorcontrib><creatorcontrib>Rahn, Christopher D</creatorcontrib><creatorcontrib>Wang, Chao-Yang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of dynamic systems, measurement, and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanim, Tanvir R</au><au>Rahn, Christopher D</au><au>Wang, Chao-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Temperature Dependent, Single Particle, Lithium Ion Cell Model Including Electrolyte Diffusion</atitle><jtitle>Journal of dynamic systems, measurement, and control</jtitle><stitle>J. Dyn. Sys., Meas., Control</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>137</volume><issue>1</issue><issn>0022-0434</issn><eissn>1528-9028</eissn><abstract>Low-order, explicit models of lithium ion cells are critical for real-time battery management system (BMS) applications. This paper presents a seventh-order, electrolyte enhanced single particle model (ESPM) with electrolyte diffusion and temperature dependent parameters (ESPM-T). The impedance transfer function coefficients are explicit in terms of the model parameters, simplifying the implementation of temperature dependence. The ESPM-T model is compared with a commercially available finite volume based model and results show accurate matching of pulse responses over a wide range of temperature (T) and C-rates (I). The voltage response to 30 s pulse charge–discharge current inputs is within 5% of the commercial code for 25 °C<T<50 °C at I≤12.5C and -10 °C<T<50°C at I≤1C for a graphite/nickel cobalt manganese (NCM) lithium ion cell.</abstract><pub>ASME</pub><doi>10.1115/1.4028154</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0434 |
ispartof | Journal of dynamic systems, measurement, and control, 2015-01, Vol.137 (1) |
issn | 0022-0434 1528-9028 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770311942 |
source | ASME Transactions Journals (Current); Alma/SFX Local Collection |
subjects | Diffusion Dynamical systems Dynamics Electric cells Electric potential Electrolytes Lithium batteries Mathematical models |
title | A Temperature Dependent, Single Particle, Lithium Ion Cell Model Including Electrolyte Diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Temperature%20Dependent,%20Single%20Particle,%20Lithium%20Ion%20Cell%20Model%20Including%20Electrolyte%20Diffusion&rft.jtitle=Journal%20of%20dynamic%20systems,%20measurement,%20and%20control&rft.au=Tanim,%20Tanvir%20R&rft.date=2015-01-01&rft.volume=137&rft.issue=1&rft.issn=0022-0434&rft.eissn=1528-9028&rft_id=info:doi/10.1115/1.4028154&rft_dat=%3Cproquest_cross%3E1770311942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770311942&rft_id=info:pmid/&rfr_iscdi=true |