Sizing of Molybdenum Nanoparticles Using Time-Resolved Laser-Induced Incandescence
Aerosolized metal nanoparticles have numerous existing and emerging applications in materials science, but their functionality in these roles is strongly size-dependent. Very recently, time-resolved laser-induced incandescence (TiRe-LII) has been investigated as a candidate for sizing aerosolized me...
Gespeichert in:
Veröffentlicht in: | Journal of heat transfer 2013-05, Vol.135 (5) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of heat transfer |
container_volume | 135 |
creator | Sipkens, T. Joshi, G. Daun, K. J. Murakami, Y. |
description | Aerosolized metal nanoparticles have numerous existing and emerging applications in materials science, but their functionality in these roles is strongly size-dependent. Very recently, time-resolved laser-induced incandescence (TiRe-LII) has been investigated as a candidate for sizing aerosolized metal nanoparticles, which requires an accurate model of the heat transfer through which the laser-energized particles re-equilibrate with the bath gas. This paper presents such a model for molybdenum nanoparticles, which is then used to analyze experimental TiRe-LII data made on aerosols of molybdenum nanoparticles in helium, argon, nitrogen, and carbon dioxide. While it is possible to estimate the particle size distribution width, recovering particles sizes requires independent knowledge of the thermal accommodation coefficient, which is presently unknown. |
doi_str_mv | 10.1115/1.4023227 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770311640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770311640</sourcerecordid><originalsourceid>FETCH-LOGICAL-a312t-dece295a740e951e864bf9ddb7eb7e61ddc71dbdfc95cb1ccf173cc386c1fd63</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKsHz172IuhhNZPs51HEj0JVqPUcspOJbNlNatIV9K93S4swMAz85vHeY-wc-A0A5Ldwk3EhhSgP2ARyUaVVnclDNuFciBSyCo7ZSYwrzkHKrJ6wxXv727rPxNvkxXc_jSE39Mmrdn6tw6bFjmLyEbfEsu0pXVD03TeZZK4jhXTmzIDjNXOonaGI5JBO2ZHVXaSz_Z6y5ePD8v45nb89ze7v5qmWIDapISRR57rMONU5UFVkja2NaUoapwBjsATTGIt1jg0gWigloqwKBGsKOWVXO9l18F8DxY3q29FA12lHfogKypJLgCLjI3q9QzH4GANZtQ5tr8OPAq62tSlQ-9pG9nIvqyPqzgbtsI3_D2K0W2zZKbvYcTr2pFZ-CG4Mq2QpKinkH213dlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770311640</pqid></control><display><type>article</type><title>Sizing of Molybdenum Nanoparticles Using Time-Resolved Laser-Induced Incandescence</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Sipkens, T. ; Joshi, G. ; Daun, K. J. ; Murakami, Y.</creator><creatorcontrib>Sipkens, T. ; Joshi, G. ; Daun, K. J. ; Murakami, Y.</creatorcontrib><description>Aerosolized metal nanoparticles have numerous existing and emerging applications in materials science, but their functionality in these roles is strongly size-dependent. Very recently, time-resolved laser-induced incandescence (TiRe-LII) has been investigated as a candidate for sizing aerosolized metal nanoparticles, which requires an accurate model of the heat transfer through which the laser-energized particles re-equilibrate with the bath gas. This paper presents such a model for molybdenum nanoparticles, which is then used to analyze experimental TiRe-LII data made on aerosols of molybdenum nanoparticles in helium, argon, nitrogen, and carbon dioxide. While it is possible to estimate the particle size distribution width, recovering particles sizes requires independent knowledge of the thermal accommodation coefficient, which is presently unknown.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.4023227</identifier><identifier>CODEN: JHTRAO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Aerosols ; Applied sciences ; Carbon dioxide ; Chemistry ; Colloidal state and disperse state ; Condensed matter: structure, mechanical and thermal properties ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; General and physical chemistry ; Heat transfer ; Laser induced incandescence ; Micro/Nanoscale Heat Transfer ; Molybdenum ; Nanoparticles ; Particle size distribution ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Sizing ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes</subject><ispartof>Journal of heat transfer, 2013-05, Vol.135 (5)</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a312t-dece295a740e951e864bf9ddb7eb7e61ddc71dbdfc95cb1ccf173cc386c1fd63</citedby><cites>FETCH-LOGICAL-a312t-dece295a740e951e864bf9ddb7eb7e61ddc71dbdfc95cb1ccf173cc386c1fd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27406402$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sipkens, T.</creatorcontrib><creatorcontrib>Joshi, G.</creatorcontrib><creatorcontrib>Daun, K. J.</creatorcontrib><creatorcontrib>Murakami, Y.</creatorcontrib><title>Sizing of Molybdenum Nanoparticles Using Time-Resolved Laser-Induced Incandescence</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>Aerosolized metal nanoparticles have numerous existing and emerging applications in materials science, but their functionality in these roles is strongly size-dependent. Very recently, time-resolved laser-induced incandescence (TiRe-LII) has been investigated as a candidate for sizing aerosolized metal nanoparticles, which requires an accurate model of the heat transfer through which the laser-energized particles re-equilibrate with the bath gas. This paper presents such a model for molybdenum nanoparticles, which is then used to analyze experimental TiRe-LII data made on aerosols of molybdenum nanoparticles in helium, argon, nitrogen, and carbon dioxide. While it is possible to estimate the particle size distribution width, recovering particles sizes requires independent knowledge of the thermal accommodation coefficient, which is presently unknown.</description><subject>Aerosols</subject><subject>Applied sciences</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Laser induced incandescence</subject><subject>Micro/Nanoscale Heat Transfer</subject><subject>Molybdenum</subject><subject>Nanoparticles</subject><subject>Particle size distribution</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Sizing</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKsHz172IuhhNZPs51HEj0JVqPUcspOJbNlNatIV9K93S4swMAz85vHeY-wc-A0A5Ldwk3EhhSgP2ARyUaVVnclDNuFciBSyCo7ZSYwrzkHKrJ6wxXv727rPxNvkxXc_jSE39Mmrdn6tw6bFjmLyEbfEsu0pXVD03TeZZK4jhXTmzIDjNXOonaGI5JBO2ZHVXaSz_Z6y5ePD8v45nb89ze7v5qmWIDapISRR57rMONU5UFVkja2NaUoapwBjsATTGIt1jg0gWigloqwKBGsKOWVXO9l18F8DxY3q29FA12lHfogKypJLgCLjI3q9QzH4GANZtQ5tr8OPAq62tSlQ-9pG9nIvqyPqzgbtsI3_D2K0W2zZKbvYcTr2pFZ-CG4Mq2QpKinkH213dlc</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Sipkens, T.</creator><creator>Joshi, G.</creator><creator>Daun, K. J.</creator><creator>Murakami, Y.</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Sizing of Molybdenum Nanoparticles Using Time-Resolved Laser-Induced Incandescence</title><author>Sipkens, T. ; Joshi, G. ; Daun, K. J. ; Murakami, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a312t-dece295a740e951e864bf9ddb7eb7e61ddc71dbdfc95cb1ccf173cc386c1fd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerosols</topic><topic>Applied sciences</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Laser induced incandescence</topic><topic>Micro/Nanoscale Heat Transfer</topic><topic>Molybdenum</topic><topic>Nanoparticles</topic><topic>Particle size distribution</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Sizing</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sipkens, T.</creatorcontrib><creatorcontrib>Joshi, G.</creatorcontrib><creatorcontrib>Daun, K. J.</creatorcontrib><creatorcontrib>Murakami, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sipkens, T.</au><au>Joshi, G.</au><au>Daun, K. J.</au><au>Murakami, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sizing of Molybdenum Nanoparticles Using Time-Resolved Laser-Induced Incandescence</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>135</volume><issue>5</issue><issn>0022-1481</issn><eissn>1528-8943</eissn><coden>JHTRAO</coden><abstract>Aerosolized metal nanoparticles have numerous existing and emerging applications in materials science, but their functionality in these roles is strongly size-dependent. Very recently, time-resolved laser-induced incandescence (TiRe-LII) has been investigated as a candidate for sizing aerosolized metal nanoparticles, which requires an accurate model of the heat transfer through which the laser-energized particles re-equilibrate with the bath gas. This paper presents such a model for molybdenum nanoparticles, which is then used to analyze experimental TiRe-LII data made on aerosols of molybdenum nanoparticles in helium, argon, nitrogen, and carbon dioxide. While it is possible to estimate the particle size distribution width, recovering particles sizes requires independent knowledge of the thermal accommodation coefficient, which is presently unknown.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.4023227</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1481 |
ispartof | Journal of heat transfer, 2013-05, Vol.135 (5) |
issn | 0022-1481 1528-8943 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770311640 |
source | ASME Transactions Journals (Current); Alma/SFX Local Collection |
subjects | Aerosols Applied sciences Carbon dioxide Chemistry Colloidal state and disperse state Condensed matter: structure, mechanical and thermal properties Energy Energy. Thermal use of fuels Exact sciences and technology General and physical chemistry Heat transfer Laser induced incandescence Micro/Nanoscale Heat Transfer Molybdenum Nanoparticles Particle size distribution Physical and chemical studies. Granulometry. Electrokinetic phenomena Physics Sizing Theoretical studies. Data and constants. Metering Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes |
title | Sizing of Molybdenum Nanoparticles Using Time-Resolved Laser-Induced Incandescence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sizing%20of%20Molybdenum%20Nanoparticles%20Using%20Time-Resolved%20Laser-Induced%20Incandescence&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Sipkens,%20T.&rft.date=2013-05-01&rft.volume=135&rft.issue=5&rft.issn=0022-1481&rft.eissn=1528-8943&rft.coden=JHTRAO&rft_id=info:doi/10.1115/1.4023227&rft_dat=%3Cproquest_cross%3E1770311640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770311640&rft_id=info:pmid/&rfr_iscdi=true |