Sizing of Molybdenum Nanoparticles Using Time-Resolved Laser-Induced Incandescence

Aerosolized metal nanoparticles have numerous existing and emerging applications in materials science, but their functionality in these roles is strongly size-dependent. Very recently, time-resolved laser-induced incandescence (TiRe-LII) has been investigated as a candidate for sizing aerosolized me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2013-05, Vol.135 (5)
Hauptverfasser: Sipkens, T., Joshi, G., Daun, K. J., Murakami, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of heat transfer
container_volume 135
creator Sipkens, T.
Joshi, G.
Daun, K. J.
Murakami, Y.
description Aerosolized metal nanoparticles have numerous existing and emerging applications in materials science, but their functionality in these roles is strongly size-dependent. Very recently, time-resolved laser-induced incandescence (TiRe-LII) has been investigated as a candidate for sizing aerosolized metal nanoparticles, which requires an accurate model of the heat transfer through which the laser-energized particles re-equilibrate with the bath gas. This paper presents such a model for molybdenum nanoparticles, which is then used to analyze experimental TiRe-LII data made on aerosols of molybdenum nanoparticles in helium, argon, nitrogen, and carbon dioxide. While it is possible to estimate the particle size distribution width, recovering particles sizes requires independent knowledge of the thermal accommodation coefficient, which is presently unknown.
doi_str_mv 10.1115/1.4023227
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770311640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770311640</sourcerecordid><originalsourceid>FETCH-LOGICAL-a312t-dece295a740e951e864bf9ddb7eb7e61ddc71dbdfc95cb1ccf173cc386c1fd63</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKsHz172IuhhNZPs51HEj0JVqPUcspOJbNlNatIV9K93S4swMAz85vHeY-wc-A0A5Ldwk3EhhSgP2ARyUaVVnclDNuFciBSyCo7ZSYwrzkHKrJ6wxXv727rPxNvkxXc_jSE39Mmrdn6tw6bFjmLyEbfEsu0pXVD03TeZZK4jhXTmzIDjNXOonaGI5JBO2ZHVXaSz_Z6y5ePD8v45nb89ze7v5qmWIDapISRR57rMONU5UFVkja2NaUoapwBjsATTGIt1jg0gWigloqwKBGsKOWVXO9l18F8DxY3q29FA12lHfogKypJLgCLjI3q9QzH4GANZtQ5tr8OPAq62tSlQ-9pG9nIvqyPqzgbtsI3_D2K0W2zZKbvYcTr2pFZ-CG4Mq2QpKinkH213dlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770311640</pqid></control><display><type>article</type><title>Sizing of Molybdenum Nanoparticles Using Time-Resolved Laser-Induced Incandescence</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Sipkens, T. ; Joshi, G. ; Daun, K. J. ; Murakami, Y.</creator><creatorcontrib>Sipkens, T. ; Joshi, G. ; Daun, K. J. ; Murakami, Y.</creatorcontrib><description>Aerosolized metal nanoparticles have numerous existing and emerging applications in materials science, but their functionality in these roles is strongly size-dependent. Very recently, time-resolved laser-induced incandescence (TiRe-LII) has been investigated as a candidate for sizing aerosolized metal nanoparticles, which requires an accurate model of the heat transfer through which the laser-energized particles re-equilibrate with the bath gas. This paper presents such a model for molybdenum nanoparticles, which is then used to analyze experimental TiRe-LII data made on aerosols of molybdenum nanoparticles in helium, argon, nitrogen, and carbon dioxide. While it is possible to estimate the particle size distribution width, recovering particles sizes requires independent knowledge of the thermal accommodation coefficient, which is presently unknown.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.4023227</identifier><identifier>CODEN: JHTRAO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Aerosols ; Applied sciences ; Carbon dioxide ; Chemistry ; Colloidal state and disperse state ; Condensed matter: structure, mechanical and thermal properties ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; General and physical chemistry ; Heat transfer ; Laser induced incandescence ; Micro/Nanoscale Heat Transfer ; Molybdenum ; Nanoparticles ; Particle size distribution ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Sizing ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes</subject><ispartof>Journal of heat transfer, 2013-05, Vol.135 (5)</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a312t-dece295a740e951e864bf9ddb7eb7e61ddc71dbdfc95cb1ccf173cc386c1fd63</citedby><cites>FETCH-LOGICAL-a312t-dece295a740e951e864bf9ddb7eb7e61ddc71dbdfc95cb1ccf173cc386c1fd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27406402$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sipkens, T.</creatorcontrib><creatorcontrib>Joshi, G.</creatorcontrib><creatorcontrib>Daun, K. J.</creatorcontrib><creatorcontrib>Murakami, Y.</creatorcontrib><title>Sizing of Molybdenum Nanoparticles Using Time-Resolved Laser-Induced Incandescence</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>Aerosolized metal nanoparticles have numerous existing and emerging applications in materials science, but their functionality in these roles is strongly size-dependent. Very recently, time-resolved laser-induced incandescence (TiRe-LII) has been investigated as a candidate for sizing aerosolized metal nanoparticles, which requires an accurate model of the heat transfer through which the laser-energized particles re-equilibrate with the bath gas. This paper presents such a model for molybdenum nanoparticles, which is then used to analyze experimental TiRe-LII data made on aerosols of molybdenum nanoparticles in helium, argon, nitrogen, and carbon dioxide. While it is possible to estimate the particle size distribution width, recovering particles sizes requires independent knowledge of the thermal accommodation coefficient, which is presently unknown.</description><subject>Aerosols</subject><subject>Applied sciences</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Laser induced incandescence</subject><subject>Micro/Nanoscale Heat Transfer</subject><subject>Molybdenum</subject><subject>Nanoparticles</subject><subject>Particle size distribution</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Sizing</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKsHz172IuhhNZPs51HEj0JVqPUcspOJbNlNatIV9K93S4swMAz85vHeY-wc-A0A5Ldwk3EhhSgP2ARyUaVVnclDNuFciBSyCo7ZSYwrzkHKrJ6wxXv727rPxNvkxXc_jSE39Mmrdn6tw6bFjmLyEbfEsu0pXVD03TeZZK4jhXTmzIDjNXOonaGI5JBO2ZHVXaSz_Z6y5ePD8v45nb89ze7v5qmWIDapISRR57rMONU5UFVkja2NaUoapwBjsATTGIt1jg0gWigloqwKBGsKOWVXO9l18F8DxY3q29FA12lHfogKypJLgCLjI3q9QzH4GANZtQ5tr8OPAq62tSlQ-9pG9nIvqyPqzgbtsI3_D2K0W2zZKbvYcTr2pFZ-CG4Mq2QpKinkH213dlc</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Sipkens, T.</creator><creator>Joshi, G.</creator><creator>Daun, K. J.</creator><creator>Murakami, Y.</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Sizing of Molybdenum Nanoparticles Using Time-Resolved Laser-Induced Incandescence</title><author>Sipkens, T. ; Joshi, G. ; Daun, K. J. ; Murakami, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a312t-dece295a740e951e864bf9ddb7eb7e61ddc71dbdfc95cb1ccf173cc386c1fd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerosols</topic><topic>Applied sciences</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Laser induced incandescence</topic><topic>Micro/Nanoscale Heat Transfer</topic><topic>Molybdenum</topic><topic>Nanoparticles</topic><topic>Particle size distribution</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Sizing</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sipkens, T.</creatorcontrib><creatorcontrib>Joshi, G.</creatorcontrib><creatorcontrib>Daun, K. J.</creatorcontrib><creatorcontrib>Murakami, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sipkens, T.</au><au>Joshi, G.</au><au>Daun, K. J.</au><au>Murakami, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sizing of Molybdenum Nanoparticles Using Time-Resolved Laser-Induced Incandescence</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>135</volume><issue>5</issue><issn>0022-1481</issn><eissn>1528-8943</eissn><coden>JHTRAO</coden><abstract>Aerosolized metal nanoparticles have numerous existing and emerging applications in materials science, but their functionality in these roles is strongly size-dependent. Very recently, time-resolved laser-induced incandescence (TiRe-LII) has been investigated as a candidate for sizing aerosolized metal nanoparticles, which requires an accurate model of the heat transfer through which the laser-energized particles re-equilibrate with the bath gas. This paper presents such a model for molybdenum nanoparticles, which is then used to analyze experimental TiRe-LII data made on aerosols of molybdenum nanoparticles in helium, argon, nitrogen, and carbon dioxide. While it is possible to estimate the particle size distribution width, recovering particles sizes requires independent knowledge of the thermal accommodation coefficient, which is presently unknown.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.4023227</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-1481
ispartof Journal of heat transfer, 2013-05, Vol.135 (5)
issn 0022-1481
1528-8943
language eng
recordid cdi_proquest_miscellaneous_1770311640
source ASME Transactions Journals (Current); Alma/SFX Local Collection
subjects Aerosols
Applied sciences
Carbon dioxide
Chemistry
Colloidal state and disperse state
Condensed matter: structure, mechanical and thermal properties
Energy
Energy. Thermal use of fuels
Exact sciences and technology
General and physical chemistry
Heat transfer
Laser induced incandescence
Micro/Nanoscale Heat Transfer
Molybdenum
Nanoparticles
Particle size distribution
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physics
Sizing
Theoretical studies. Data and constants. Metering
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
title Sizing of Molybdenum Nanoparticles Using Time-Resolved Laser-Induced Incandescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sizing%20of%20Molybdenum%20Nanoparticles%20Using%20Time-Resolved%20Laser-Induced%20Incandescence&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Sipkens,%20T.&rft.date=2013-05-01&rft.volume=135&rft.issue=5&rft.issn=0022-1481&rft.eissn=1528-8943&rft.coden=JHTRAO&rft_id=info:doi/10.1115/1.4023227&rft_dat=%3Cproquest_cross%3E1770311640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770311640&rft_id=info:pmid/&rfr_iscdi=true