Analytical Solution for 2D Non-Fickian Transient Mass Transfer With Arbitrary Initial and Periodic Boundary Conditions
Two-dimensional non-Fickian diffusion equation is solved analytically under arbitrary initial condition and two kinds of periodic boundary conditions. The concentration field distributions are analytically obtained with a form of double Fourier series, and the damped diffusion wave transport is disc...
Gespeichert in:
Veröffentlicht in: | Journal of heat transfer 2013-08, Vol.135 (8) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Journal of heat transfer |
container_volume | 135 |
creator | Suo, Yaohong Shen, Shengping |
description | Two-dimensional non-Fickian diffusion equation is solved analytically under arbitrary initial condition and two kinds of periodic boundary conditions. The concentration field distributions are analytically obtained with a form of double Fourier series, and the damped diffusion wave transport is discussed. At the same time, the numerical simulation is carried out for the problem with homogeneous boundary condition and arbitrary initial condition, which shows that the concentration field gradually changes from the initial distribution to the steady distribution and it changes faster for the smaller Vernotte number. The numerical results agree well with the experimental results. |
doi_str_mv | 10.1115/1.4024352 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770310998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770310998</sourcerecordid><originalsourceid>FETCH-LOGICAL-a312t-575ced27ac09dbf64d1692489d75dfdb485c09b35c1a60b618a3e1c730b8b7263</originalsourceid><addsrcrecordid>eNo9kE1P3DAQhi1UJLbAoWcuviC1hywe24md43bbpUh8SYB6tBzbEYasDXZSiX-PV1n1NBrNM--MHoS-AVkCQH0BS04oZzU9QAuoqaxky9kXtCCE0gq4hCP0NecXQoAx3i7Qv1XQw8fojR7wQxym0ceA-5gw_YVvY6g23rx6HfBj0iF7F0Z8o3Oe294l_NePz3iVOj8mnT7wVfCjL1E6WHzvko_WG_wzTsHupusYrN9dyCfosNdDdqf7eoyeNr8f13-q67vLq_XqutIM6FjVojbOUqENaW3XN9xC01IuWytq29uOy7pMOlYb0A3pGpCaOTCCkU52gjbsGH2fc99SfJ9cHtXWZ-OGQQcXp6xACMKAtK0s6I8ZNSnmnFyv3pLflrcVELVzq0Dt3Rb2fB-rczHXFxvG5_8LVLSclkcLdzZzOm-deolTKrazYoJLTtgnL-6BxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770310998</pqid></control><display><type>article</type><title>Analytical Solution for 2D Non-Fickian Transient Mass Transfer With Arbitrary Initial and Periodic Boundary Conditions</title><source>ASME Digital Library - Journals</source><source>Alma/SFX Local Collection</source><creator>Suo, Yaohong ; Shen, Shengping</creator><creatorcontrib>Suo, Yaohong ; Shen, Shengping</creatorcontrib><description>Two-dimensional non-Fickian diffusion equation is solved analytically under arbitrary initial condition and two kinds of periodic boundary conditions. The concentration field distributions are analytically obtained with a form of double Fourier series, and the damped diffusion wave transport is discussed. At the same time, the numerical simulation is carried out for the problem with homogeneous boundary condition and arbitrary initial condition, which shows that the concentration field gradually changes from the initial distribution to the steady distribution and it changes faster for the smaller Vernotte number. The numerical results agree well with the experimental results.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.4024352</identifier><identifier>CODEN: JHTRAO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Boundary conditions ; Chemistry ; Diffusion ; Exact sciences and technology ; General and physical chemistry ; Heat and Mass Transfer ; Initial conditions ; Mass transfer ; Mathematical analysis ; Mathematical models ; Theory of reactions, general kinetics ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Transport ; Two dimensional</subject><ispartof>Journal of heat transfer, 2013-08, Vol.135 (8)</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a312t-575ced27ac09dbf64d1692489d75dfdb485c09b35c1a60b618a3e1c730b8b7263</citedby><cites>FETCH-LOGICAL-a312t-575ced27ac09dbf64d1692489d75dfdb485c09b35c1a60b618a3e1c730b8b7263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906,38501</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27942692$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Suo, Yaohong</creatorcontrib><creatorcontrib>Shen, Shengping</creatorcontrib><title>Analytical Solution for 2D Non-Fickian Transient Mass Transfer With Arbitrary Initial and Periodic Boundary Conditions</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>Two-dimensional non-Fickian diffusion equation is solved analytically under arbitrary initial condition and two kinds of periodic boundary conditions. The concentration field distributions are analytically obtained with a form of double Fourier series, and the damped diffusion wave transport is discussed. At the same time, the numerical simulation is carried out for the problem with homogeneous boundary condition and arbitrary initial condition, which shows that the concentration field gradually changes from the initial distribution to the steady distribution and it changes faster for the smaller Vernotte number. The numerical results agree well with the experimental results.</description><subject>Boundary conditions</subject><subject>Chemistry</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat and Mass Transfer</subject><subject>Initial conditions</subject><subject>Mass transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Theory of reactions, general kinetics</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Transport</subject><subject>Two dimensional</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1P3DAQhi1UJLbAoWcuviC1hywe24md43bbpUh8SYB6tBzbEYasDXZSiX-PV1n1NBrNM--MHoS-AVkCQH0BS04oZzU9QAuoqaxky9kXtCCE0gq4hCP0NecXQoAx3i7Qv1XQw8fojR7wQxym0ceA-5gw_YVvY6g23rx6HfBj0iF7F0Z8o3Oe294l_NePz3iVOj8mnT7wVfCjL1E6WHzvko_WG_wzTsHupusYrN9dyCfosNdDdqf7eoyeNr8f13-q67vLq_XqutIM6FjVojbOUqENaW3XN9xC01IuWytq29uOy7pMOlYb0A3pGpCaOTCCkU52gjbsGH2fc99SfJ9cHtXWZ-OGQQcXp6xACMKAtK0s6I8ZNSnmnFyv3pLflrcVELVzq0Dt3Rb2fB-rczHXFxvG5_8LVLSclkcLdzZzOm-deolTKrazYoJLTtgnL-6BxA</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Suo, Yaohong</creator><creator>Shen, Shengping</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Analytical Solution for 2D Non-Fickian Transient Mass Transfer With Arbitrary Initial and Periodic Boundary Conditions</title><author>Suo, Yaohong ; Shen, Shengping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a312t-575ced27ac09dbf64d1692489d75dfdb485c09b35c1a60b618a3e1c730b8b7263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary conditions</topic><topic>Chemistry</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat and Mass Transfer</topic><topic>Initial conditions</topic><topic>Mass transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Theory of reactions, general kinetics</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Transport</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suo, Yaohong</creatorcontrib><creatorcontrib>Shen, Shengping</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suo, Yaohong</au><au>Shen, Shengping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Solution for 2D Non-Fickian Transient Mass Transfer With Arbitrary Initial and Periodic Boundary Conditions</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>135</volume><issue>8</issue><issn>0022-1481</issn><eissn>1528-8943</eissn><coden>JHTRAO</coden><abstract>Two-dimensional non-Fickian diffusion equation is solved analytically under arbitrary initial condition and two kinds of periodic boundary conditions. The concentration field distributions are analytically obtained with a form of double Fourier series, and the damped diffusion wave transport is discussed. At the same time, the numerical simulation is carried out for the problem with homogeneous boundary condition and arbitrary initial condition, which shows that the concentration field gradually changes from the initial distribution to the steady distribution and it changes faster for the smaller Vernotte number. The numerical results agree well with the experimental results.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.4024352</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1481 |
ispartof | Journal of heat transfer, 2013-08, Vol.135 (8) |
issn | 0022-1481 1528-8943 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770310998 |
source | ASME Digital Library - Journals; Alma/SFX Local Collection |
subjects | Boundary conditions Chemistry Diffusion Exact sciences and technology General and physical chemistry Heat and Mass Transfer Initial conditions Mass transfer Mathematical analysis Mathematical models Theory of reactions, general kinetics Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Transport Two dimensional |
title | Analytical Solution for 2D Non-Fickian Transient Mass Transfer With Arbitrary Initial and Periodic Boundary Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Solution%20for%202D%20Non-Fickian%20Transient%20Mass%20Transfer%20With%20Arbitrary%20Initial%20and%20Periodic%20Boundary%20Conditions&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Suo,%20Yaohong&rft.date=2013-08-01&rft.volume=135&rft.issue=8&rft.issn=0022-1481&rft.eissn=1528-8943&rft.coden=JHTRAO&rft_id=info:doi/10.1115/1.4024352&rft_dat=%3Cproquest_cross%3E1770310998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770310998&rft_id=info:pmid/&rfr_iscdi=true |