Analytical Solution for 2D Non-Fickian Transient Mass Transfer With Arbitrary Initial and Periodic Boundary Conditions

Two-dimensional non-Fickian diffusion equation is solved analytically under arbitrary initial condition and two kinds of periodic boundary conditions. The concentration field distributions are analytically obtained with a form of double Fourier series, and the damped diffusion wave transport is disc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2013-08, Vol.135 (8)
Hauptverfasser: Suo, Yaohong, Shen, Shengping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Journal of heat transfer
container_volume 135
creator Suo, Yaohong
Shen, Shengping
description Two-dimensional non-Fickian diffusion equation is solved analytically under arbitrary initial condition and two kinds of periodic boundary conditions. The concentration field distributions are analytically obtained with a form of double Fourier series, and the damped diffusion wave transport is discussed. At the same time, the numerical simulation is carried out for the problem with homogeneous boundary condition and arbitrary initial condition, which shows that the concentration field gradually changes from the initial distribution to the steady distribution and it changes faster for the smaller Vernotte number. The numerical results agree well with the experimental results.
doi_str_mv 10.1115/1.4024352
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770310998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770310998</sourcerecordid><originalsourceid>FETCH-LOGICAL-a312t-575ced27ac09dbf64d1692489d75dfdb485c09b35c1a60b618a3e1c730b8b7263</originalsourceid><addsrcrecordid>eNo9kE1P3DAQhi1UJLbAoWcuviC1hywe24md43bbpUh8SYB6tBzbEYasDXZSiX-PV1n1NBrNM--MHoS-AVkCQH0BS04oZzU9QAuoqaxky9kXtCCE0gq4hCP0NecXQoAx3i7Qv1XQw8fojR7wQxym0ceA-5gw_YVvY6g23rx6HfBj0iF7F0Z8o3Oe294l_NePz3iVOj8mnT7wVfCjL1E6WHzvko_WG_wzTsHupusYrN9dyCfosNdDdqf7eoyeNr8f13-q67vLq_XqutIM6FjVojbOUqENaW3XN9xC01IuWytq29uOy7pMOlYb0A3pGpCaOTCCkU52gjbsGH2fc99SfJ9cHtXWZ-OGQQcXp6xACMKAtK0s6I8ZNSnmnFyv3pLflrcVELVzq0Dt3Rb2fB-rczHXFxvG5_8LVLSclkcLdzZzOm-deolTKrazYoJLTtgnL-6BxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770310998</pqid></control><display><type>article</type><title>Analytical Solution for 2D Non-Fickian Transient Mass Transfer With Arbitrary Initial and Periodic Boundary Conditions</title><source>ASME Digital Library - Journals</source><source>Alma/SFX Local Collection</source><creator>Suo, Yaohong ; Shen, Shengping</creator><creatorcontrib>Suo, Yaohong ; Shen, Shengping</creatorcontrib><description>Two-dimensional non-Fickian diffusion equation is solved analytically under arbitrary initial condition and two kinds of periodic boundary conditions. The concentration field distributions are analytically obtained with a form of double Fourier series, and the damped diffusion wave transport is discussed. At the same time, the numerical simulation is carried out for the problem with homogeneous boundary condition and arbitrary initial condition, which shows that the concentration field gradually changes from the initial distribution to the steady distribution and it changes faster for the smaller Vernotte number. The numerical results agree well with the experimental results.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.4024352</identifier><identifier>CODEN: JHTRAO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Boundary conditions ; Chemistry ; Diffusion ; Exact sciences and technology ; General and physical chemistry ; Heat and Mass Transfer ; Initial conditions ; Mass transfer ; Mathematical analysis ; Mathematical models ; Theory of reactions, general kinetics ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Transport ; Two dimensional</subject><ispartof>Journal of heat transfer, 2013-08, Vol.135 (8)</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a312t-575ced27ac09dbf64d1692489d75dfdb485c09b35c1a60b618a3e1c730b8b7263</citedby><cites>FETCH-LOGICAL-a312t-575ced27ac09dbf64d1692489d75dfdb485c09b35c1a60b618a3e1c730b8b7263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906,38501</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27942692$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Suo, Yaohong</creatorcontrib><creatorcontrib>Shen, Shengping</creatorcontrib><title>Analytical Solution for 2D Non-Fickian Transient Mass Transfer With Arbitrary Initial and Periodic Boundary Conditions</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>Two-dimensional non-Fickian diffusion equation is solved analytically under arbitrary initial condition and two kinds of periodic boundary conditions. The concentration field distributions are analytically obtained with a form of double Fourier series, and the damped diffusion wave transport is discussed. At the same time, the numerical simulation is carried out for the problem with homogeneous boundary condition and arbitrary initial condition, which shows that the concentration field gradually changes from the initial distribution to the steady distribution and it changes faster for the smaller Vernotte number. The numerical results agree well with the experimental results.</description><subject>Boundary conditions</subject><subject>Chemistry</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat and Mass Transfer</subject><subject>Initial conditions</subject><subject>Mass transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Theory of reactions, general kinetics</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Transport</subject><subject>Two dimensional</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1P3DAQhi1UJLbAoWcuviC1hywe24md43bbpUh8SYB6tBzbEYasDXZSiX-PV1n1NBrNM--MHoS-AVkCQH0BS04oZzU9QAuoqaxky9kXtCCE0gq4hCP0NecXQoAx3i7Qv1XQw8fojR7wQxym0ceA-5gw_YVvY6g23rx6HfBj0iF7F0Z8o3Oe294l_NePz3iVOj8mnT7wVfCjL1E6WHzvko_WG_wzTsHupusYrN9dyCfosNdDdqf7eoyeNr8f13-q67vLq_XqutIM6FjVojbOUqENaW3XN9xC01IuWytq29uOy7pMOlYb0A3pGpCaOTCCkU52gjbsGH2fc99SfJ9cHtXWZ-OGQQcXp6xACMKAtK0s6I8ZNSnmnFyv3pLflrcVELVzq0Dt3Rb2fB-rczHXFxvG5_8LVLSclkcLdzZzOm-deolTKrazYoJLTtgnL-6BxA</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Suo, Yaohong</creator><creator>Shen, Shengping</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Analytical Solution for 2D Non-Fickian Transient Mass Transfer With Arbitrary Initial and Periodic Boundary Conditions</title><author>Suo, Yaohong ; Shen, Shengping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a312t-575ced27ac09dbf64d1692489d75dfdb485c09b35c1a60b618a3e1c730b8b7263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary conditions</topic><topic>Chemistry</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat and Mass Transfer</topic><topic>Initial conditions</topic><topic>Mass transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Theory of reactions, general kinetics</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Transport</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suo, Yaohong</creatorcontrib><creatorcontrib>Shen, Shengping</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suo, Yaohong</au><au>Shen, Shengping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Solution for 2D Non-Fickian Transient Mass Transfer With Arbitrary Initial and Periodic Boundary Conditions</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>135</volume><issue>8</issue><issn>0022-1481</issn><eissn>1528-8943</eissn><coden>JHTRAO</coden><abstract>Two-dimensional non-Fickian diffusion equation is solved analytically under arbitrary initial condition and two kinds of periodic boundary conditions. The concentration field distributions are analytically obtained with a form of double Fourier series, and the damped diffusion wave transport is discussed. At the same time, the numerical simulation is carried out for the problem with homogeneous boundary condition and arbitrary initial condition, which shows that the concentration field gradually changes from the initial distribution to the steady distribution and it changes faster for the smaller Vernotte number. The numerical results agree well with the experimental results.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.4024352</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-1481
ispartof Journal of heat transfer, 2013-08, Vol.135 (8)
issn 0022-1481
1528-8943
language eng
recordid cdi_proquest_miscellaneous_1770310998
source ASME Digital Library - Journals; Alma/SFX Local Collection
subjects Boundary conditions
Chemistry
Diffusion
Exact sciences and technology
General and physical chemistry
Heat and Mass Transfer
Initial conditions
Mass transfer
Mathematical analysis
Mathematical models
Theory of reactions, general kinetics
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Transport
Two dimensional
title Analytical Solution for 2D Non-Fickian Transient Mass Transfer With Arbitrary Initial and Periodic Boundary Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Solution%20for%202D%20Non-Fickian%20Transient%20Mass%20Transfer%20With%20Arbitrary%20Initial%20and%20Periodic%20Boundary%20Conditions&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Suo,%20Yaohong&rft.date=2013-08-01&rft.volume=135&rft.issue=8&rft.issn=0022-1481&rft.eissn=1528-8943&rft.coden=JHTRAO&rft_id=info:doi/10.1115/1.4024352&rft_dat=%3Cproquest_cross%3E1770310998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770310998&rft_id=info:pmid/&rfr_iscdi=true