Instantons and extreme value statistics of random matrices
A bstract We discuss the distribution of the largest eigenvalue of a random N × N Hermitian matrix. Utilising results from the quantum gravity and string theory literature it is seen that the orthogonal polynomials approach, first introduced by Majumdar and Nadal, can be extended to calculate both t...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2014-04, Vol.2014 (4), p.1-31, Article 118 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2014 |
creator | Atkin, Max R. Zohren, Stefan |
description | A
bstract
We discuss the distribution of the largest eigenvalue of a random
N
×
N
Hermitian matrix. Utilising results from the quantum gravity and string theory literature it is seen that the orthogonal polynomials approach, first introduced by Majumdar and Nadal, can be extended to calculate both the left and right tail large deviations of the maximum eigenvalue. This framework does not only provide computational advantages when considering the left and right tail large deviations for general potentials, as is done explicitly for the first multi-critical potential, but it also offers an interesting interpretation of the results. In particular, it is seen that the left tail large deviations follow from a standard perturbative large
N
expansion of the free energy, while the right tail large deviations are related to the non-perturbative expansion and thus to instanton corrections. Considering the standard interpretation of instantons as tunnelling of eigenvalues, we see that the right tail rate function can be identified with the instanton action which in turn can be given as a simple expression in terms of the spectral curve. From the string theory point of view these non-perturbative corrections correspond to branes and can be identified with FZZT branes. |
doi_str_mv | 10.1007/JHEP04(2014)118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770310504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770310504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-a57a3514c6e2ed50aed37f908c020582abb2d8f322270184a69ba29306e00de3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKdnrwUv81D3kiZN6k3G1MlAD7uHrH2VjjadSSr635tRD0Pw9B687_fj8RFyTeGOAsj5y_PyDfiMAeW3lKoTMqHAilRxWZwe7efkwvsdABW0gAm5X1kfjA299YmxVYJfwWGHyadpB0ziKTQ-NKVP-jpxEei7pDPBNSX6S3JWm9bj1e-cks3jcrN4TtevT6vFwzotuYCQGiFNJigvc2RYCTBYZbIuQJXAQChmtltWqTpjjEmgipu82BpWZJAjQIXZlMzG2r3rPwb0QXeNL7FtjcV-8JpKCRkFATyiN3_QXT84G5_TNBdMyUxxFqn5SJWu995hrfeu6Yz71hT0QaUeVeqDSh1VxgSMCR9J-47uqPefyA9cZHQ9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652873842</pqid></control><display><type>article</type><title>Instantons and extreme value statistics of random matrices</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>Springer Nature OA Free Journals</source><creator>Atkin, Max R. ; Zohren, Stefan</creator><creatorcontrib>Atkin, Max R. ; Zohren, Stefan</creatorcontrib><description>A
bstract
We discuss the distribution of the largest eigenvalue of a random
N
×
N
Hermitian matrix. Utilising results from the quantum gravity and string theory literature it is seen that the orthogonal polynomials approach, first introduced by Majumdar and Nadal, can be extended to calculate both the left and right tail large deviations of the maximum eigenvalue. This framework does not only provide computational advantages when considering the left and right tail large deviations for general potentials, as is done explicitly for the first multi-critical potential, but it also offers an interesting interpretation of the results. In particular, it is seen that the left tail large deviations follow from a standard perturbative large
N
expansion of the free energy, while the right tail large deviations are related to the non-perturbative expansion and thus to instanton corrections. Considering the standard interpretation of instantons as tunnelling of eigenvalues, we see that the right tail rate function can be identified with the instanton action which in turn can be given as a simple expression in terms of the spectral curve. From the string theory point of view these non-perturbative corrections correspond to branes and can be identified with FZZT branes.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP04(2014)118</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Branes ; Classical and Quantum Gravitation ; Deviation ; Eigenvalues ; Elementary Particles ; High energy physics ; Instantons ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum gravity ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2014-04, Vol.2014 (4), p.1-31, Article 118</ispartof><rights>The Author(s) 2014</rights><rights>SISSA, Trieste, Italy 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-a57a3514c6e2ed50aed37f908c020582abb2d8f322270184a69ba29306e00de3</citedby><cites>FETCH-LOGICAL-c450t-a57a3514c6e2ed50aed37f908c020582abb2d8f322270184a69ba29306e00de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP04(2014)118$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP04(2014)118$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids></links><search><creatorcontrib>Atkin, Max R.</creatorcontrib><creatorcontrib>Zohren, Stefan</creatorcontrib><title>Instantons and extreme value statistics of random matrices</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
We discuss the distribution of the largest eigenvalue of a random
N
×
N
Hermitian matrix. Utilising results from the quantum gravity and string theory literature it is seen that the orthogonal polynomials approach, first introduced by Majumdar and Nadal, can be extended to calculate both the left and right tail large deviations of the maximum eigenvalue. This framework does not only provide computational advantages when considering the left and right tail large deviations for general potentials, as is done explicitly for the first multi-critical potential, but it also offers an interesting interpretation of the results. In particular, it is seen that the left tail large deviations follow from a standard perturbative large
N
expansion of the free energy, while the right tail large deviations are related to the non-perturbative expansion and thus to instanton corrections. Considering the standard interpretation of instantons as tunnelling of eigenvalues, we see that the right tail rate function can be identified with the instanton action which in turn can be given as a simple expression in terms of the spectral curve. From the string theory point of view these non-perturbative corrections correspond to branes and can be identified with FZZT branes.</description><subject>Branes</subject><subject>Classical and Quantum Gravitation</subject><subject>Deviation</subject><subject>Eigenvalues</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Instantons</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum gravity</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kMFLwzAUh4MoOKdnrwUv81D3kiZN6k3G1MlAD7uHrH2VjjadSSr635tRD0Pw9B687_fj8RFyTeGOAsj5y_PyDfiMAeW3lKoTMqHAilRxWZwe7efkwvsdABW0gAm5X1kfjA299YmxVYJfwWGHyadpB0ziKTQ-NKVP-jpxEei7pDPBNSX6S3JWm9bj1e-cks3jcrN4TtevT6vFwzotuYCQGiFNJigvc2RYCTBYZbIuQJXAQChmtltWqTpjjEmgipu82BpWZJAjQIXZlMzG2r3rPwb0QXeNL7FtjcV-8JpKCRkFATyiN3_QXT84G5_TNBdMyUxxFqn5SJWu995hrfeu6Yz71hT0QaUeVeqDSh1VxgSMCR9J-47uqPefyA9cZHQ9</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Atkin, Max R.</creator><creator>Zohren, Stefan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Instantons and extreme value statistics of random matrices</title><author>Atkin, Max R. ; Zohren, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-a57a3514c6e2ed50aed37f908c020582abb2d8f322270184a69ba29306e00de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Branes</topic><topic>Classical and Quantum Gravitation</topic><topic>Deviation</topic><topic>Eigenvalues</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Instantons</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum gravity</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atkin, Max R.</creatorcontrib><creatorcontrib>Zohren, Stefan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atkin, Max R.</au><au>Zohren, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instantons and extreme value statistics of random matrices</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>2014</volume><issue>4</issue><spage>1</spage><epage>31</epage><pages>1-31</pages><artnum>118</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
We discuss the distribution of the largest eigenvalue of a random
N
×
N
Hermitian matrix. Utilising results from the quantum gravity and string theory literature it is seen that the orthogonal polynomials approach, first introduced by Majumdar and Nadal, can be extended to calculate both the left and right tail large deviations of the maximum eigenvalue. This framework does not only provide computational advantages when considering the left and right tail large deviations for general potentials, as is done explicitly for the first multi-critical potential, but it also offers an interesting interpretation of the results. In particular, it is seen that the left tail large deviations follow from a standard perturbative large
N
expansion of the free energy, while the right tail large deviations are related to the non-perturbative expansion and thus to instanton corrections. Considering the standard interpretation of instantons as tunnelling of eigenvalues, we see that the right tail rate function can be identified with the instanton action which in turn can be given as a simple expression in terms of the spectral curve. From the string theory point of view these non-perturbative corrections correspond to branes and can be identified with FZZT branes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP04(2014)118</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2014-04, Vol.2014 (4), p.1-31, Article 118 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770310504 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; Springer Nature OA Free Journals |
subjects | Branes Classical and Quantum Gravitation Deviation Eigenvalues Elementary Particles High energy physics Instantons Mathematical analysis Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum gravity Quantum Physics Relativity Theory String Theory |
title | Instantons and extreme value statistics of random matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instantons%20and%20extreme%20value%20statistics%20of%20random%20matrices&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Atkin,%20Max%20R.&rft.date=2014-04-01&rft.volume=2014&rft.issue=4&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.artnum=118&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP04(2014)118&rft_dat=%3Cproquest_cross%3E1770310504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652873842&rft_id=info:pmid/&rfr_iscdi=true |