Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams

This paper investigates the three-dimensional motion characteristics of perfect and imperfect Timoshenko microbeams under mechanical and thermal forces; the mechanical properties of the microbeam are considered temperature-dependent. The centerline of the microbeam is considered to be extensible and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2015-06, Vol.91, p.12-33
Hauptverfasser: Farokhi, Hamed, Ghayesh, Mergen H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue
container_start_page 12
container_title International journal of engineering science
container_volume 91
creator Farokhi, Hamed
Ghayesh, Mergen H.
description This paper investigates the three-dimensional motion characteristics of perfect and imperfect Timoshenko microbeams under mechanical and thermal forces; the mechanical properties of the microbeam are considered temperature-dependent. The centerline of the microbeam is considered to be extensible and the equations of motion for the longitudinal, transverse, and rotational motions are derived by means of the extended Hamilton’s principle and the modified couple stress theory. These three coupled nonlinear partial differential equations are discretized by means of Galerkin’s technique, yielding a set of second-order nonlinear ordinary differential equations. These equations are solved by means of the pseudo-arclength continuation technique and via an eigenvalue analysis, for the nonlinear and linear analyses, respectively. The geometrically perfect microbeam remains stable at its original static equilibrium position up to the temperature when it loses stability by divergence via a supercritical pitchfork bifurcation; the post-buckling state is obtained and resonant response over it is analysed. For the initially imperfect microbeam, as the temperature is increased, the initial curvature amplitude increases and no instabilities occur; the resonant response of the system over the new deflected configuration is examined numerically. The effect of different parameters on the nonlinear behaviour of the system is studied.
doi_str_mv 10.1016/j.ijengsci.2015.02.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770310136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722515000282</els_id><sourcerecordid>1770310136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-4aa4830977a2049ec0ef8825e2200e450d6d9384d9733dc867dbb83eee4eeeff3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QfboZddJsrvZ3JTiR6HgpZ5DmszarM2mJq3Qf29K9exhGAaeeZl5CLmlUFGg7f1QuQHHj2RcxYA2FbAKoDkjE9oJWTIqxTmZADAoBWPNJblKaYBMcCknZL5cY_Sh9GjWenRGbwp7GLV3JhWhL7YYezS7Qo-2cP5vWjof0hrHz1BkMIYVap-uyUWvNwlvfvuUvD8_LWev5eLtZT57XJSG182urLWuOw5SCM2glmgA-65jDTIGgHUDtrWSd7WVgnNrulbY1arjiFjn6ns-JXen3G0MX3tMO-VdMrjZ6BHDPikqBPAshrcZbU9ovjGliL3aRud1PCgK6uhODerPnTq6U8DU0cyUPJwWMT_y7TCqTOBo0LqYBSgb3H8RP6A_fBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770310136</pqid></control><display><type>article</type><title>Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams</title><source>Elsevier ScienceDirect Journals</source><creator>Farokhi, Hamed ; Ghayesh, Mergen H.</creator><creatorcontrib>Farokhi, Hamed ; Ghayesh, Mergen H.</creatorcontrib><description>This paper investigates the three-dimensional motion characteristics of perfect and imperfect Timoshenko microbeams under mechanical and thermal forces; the mechanical properties of the microbeam are considered temperature-dependent. The centerline of the microbeam is considered to be extensible and the equations of motion for the longitudinal, transverse, and rotational motions are derived by means of the extended Hamilton’s principle and the modified couple stress theory. These three coupled nonlinear partial differential equations are discretized by means of Galerkin’s technique, yielding a set of second-order nonlinear ordinary differential equations. These equations are solved by means of the pseudo-arclength continuation technique and via an eigenvalue analysis, for the nonlinear and linear analyses, respectively. The geometrically perfect microbeam remains stable at its original static equilibrium position up to the temperature when it loses stability by divergence via a supercritical pitchfork bifurcation; the post-buckling state is obtained and resonant response over it is analysed. For the initially imperfect microbeam, as the temperature is increased, the initial curvature amplitude increases and no instabilities occur; the resonant response of the system over the new deflected configuration is examined numerically. The effect of different parameters on the nonlinear behaviour of the system is studied.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/j.ijengsci.2015.02.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bifurcation diagrams ; Differential equations ; Eigenvalues ; Joining ; Mathematical analysis ; Microbeams ; Modified couple stress theory ; Nonlinearity ; Perfect and imperfect Timoshenko microbeams ; Stability ; Temperature-dependent mechanical properties ; Thermo-mechanics ; Three dimensional motion</subject><ispartof>International journal of engineering science, 2015-06, Vol.91, p.12-33</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-4aa4830977a2049ec0ef8825e2200e450d6d9384d9733dc867dbb83eee4eeeff3</citedby><cites>FETCH-LOGICAL-c345t-4aa4830977a2049ec0ef8825e2200e450d6d9384d9733dc867dbb83eee4eeeff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020722515000282$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Farokhi, Hamed</creatorcontrib><creatorcontrib>Ghayesh, Mergen H.</creatorcontrib><title>Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams</title><title>International journal of engineering science</title><description>This paper investigates the three-dimensional motion characteristics of perfect and imperfect Timoshenko microbeams under mechanical and thermal forces; the mechanical properties of the microbeam are considered temperature-dependent. The centerline of the microbeam is considered to be extensible and the equations of motion for the longitudinal, transverse, and rotational motions are derived by means of the extended Hamilton’s principle and the modified couple stress theory. These three coupled nonlinear partial differential equations are discretized by means of Galerkin’s technique, yielding a set of second-order nonlinear ordinary differential equations. These equations are solved by means of the pseudo-arclength continuation technique and via an eigenvalue analysis, for the nonlinear and linear analyses, respectively. The geometrically perfect microbeam remains stable at its original static equilibrium position up to the temperature when it loses stability by divergence via a supercritical pitchfork bifurcation; the post-buckling state is obtained and resonant response over it is analysed. For the initially imperfect microbeam, as the temperature is increased, the initial curvature amplitude increases and no instabilities occur; the resonant response of the system over the new deflected configuration is examined numerically. The effect of different parameters on the nonlinear behaviour of the system is studied.</description><subject>Bifurcation diagrams</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Microbeams</subject><subject>Modified couple stress theory</subject><subject>Nonlinearity</subject><subject>Perfect and imperfect Timoshenko microbeams</subject><subject>Stability</subject><subject>Temperature-dependent mechanical properties</subject><subject>Thermo-mechanics</subject><subject>Three dimensional motion</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QfboZddJsrvZ3JTiR6HgpZ5DmszarM2mJq3Qf29K9exhGAaeeZl5CLmlUFGg7f1QuQHHj2RcxYA2FbAKoDkjE9oJWTIqxTmZADAoBWPNJblKaYBMcCknZL5cY_Sh9GjWenRGbwp7GLV3JhWhL7YYezS7Qo-2cP5vWjof0hrHz1BkMIYVap-uyUWvNwlvfvuUvD8_LWev5eLtZT57XJSG182urLWuOw5SCM2glmgA-65jDTIGgHUDtrWSd7WVgnNrulbY1arjiFjn6ns-JXen3G0MX3tMO-VdMrjZ6BHDPikqBPAshrcZbU9ovjGliL3aRud1PCgK6uhODerPnTq6U8DU0cyUPJwWMT_y7TCqTOBo0LqYBSgb3H8RP6A_fBY</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Farokhi, Hamed</creator><creator>Ghayesh, Mergen H.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150601</creationdate><title>Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams</title><author>Farokhi, Hamed ; Ghayesh, Mergen H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-4aa4830977a2049ec0ef8825e2200e450d6d9384d9733dc867dbb83eee4eeeff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bifurcation diagrams</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Microbeams</topic><topic>Modified couple stress theory</topic><topic>Nonlinearity</topic><topic>Perfect and imperfect Timoshenko microbeams</topic><topic>Stability</topic><topic>Temperature-dependent mechanical properties</topic><topic>Thermo-mechanics</topic><topic>Three dimensional motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farokhi, Hamed</creatorcontrib><creatorcontrib>Ghayesh, Mergen H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farokhi, Hamed</au><au>Ghayesh, Mergen H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams</atitle><jtitle>International journal of engineering science</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>91</volume><spage>12</spage><epage>33</epage><pages>12-33</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><abstract>This paper investigates the three-dimensional motion characteristics of perfect and imperfect Timoshenko microbeams under mechanical and thermal forces; the mechanical properties of the microbeam are considered temperature-dependent. The centerline of the microbeam is considered to be extensible and the equations of motion for the longitudinal, transverse, and rotational motions are derived by means of the extended Hamilton’s principle and the modified couple stress theory. These three coupled nonlinear partial differential equations are discretized by means of Galerkin’s technique, yielding a set of second-order nonlinear ordinary differential equations. These equations are solved by means of the pseudo-arclength continuation technique and via an eigenvalue analysis, for the nonlinear and linear analyses, respectively. The geometrically perfect microbeam remains stable at its original static equilibrium position up to the temperature when it loses stability by divergence via a supercritical pitchfork bifurcation; the post-buckling state is obtained and resonant response over it is analysed. For the initially imperfect microbeam, as the temperature is increased, the initial curvature amplitude increases and no instabilities occur; the resonant response of the system over the new deflected configuration is examined numerically. The effect of different parameters on the nonlinear behaviour of the system is studied.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijengsci.2015.02.005</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7225
ispartof International journal of engineering science, 2015-06, Vol.91, p.12-33
issn 0020-7225
1879-2197
language eng
recordid cdi_proquest_miscellaneous_1770310136
source Elsevier ScienceDirect Journals
subjects Bifurcation diagrams
Differential equations
Eigenvalues
Joining
Mathematical analysis
Microbeams
Modified couple stress theory
Nonlinearity
Perfect and imperfect Timoshenko microbeams
Stability
Temperature-dependent mechanical properties
Thermo-mechanics
Three dimensional motion
title Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-mechanical%20dynamics%20of%20perfect%20and%20imperfect%20Timoshenko%20microbeams&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Farokhi,%20Hamed&rft.date=2015-06-01&rft.volume=91&rft.spage=12&rft.epage=33&rft.pages=12-33&rft.issn=0020-7225&rft.eissn=1879-2197&rft_id=info:doi/10.1016/j.ijengsci.2015.02.005&rft_dat=%3Cproquest_cross%3E1770310136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770310136&rft_id=info:pmid/&rft_els_id=S0020722515000282&rfr_iscdi=true