Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering
Highlights • EE-MC is a new unsupervised methodology for predicting protein complexes from weighted PPI graphs. • It is by design able to overcome intrinsic limitations of existing methodologies. • It outperformed existing methodologies increasing the separation metric by 10–20%. • 72.58% of the pre...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence in medicine 2015-03, Vol.63 (3), p.181-189 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | 3 |
container_start_page | 181 |
container_title | Artificial intelligence in medicine |
container_volume | 63 |
creator | Theofilatos, Konstantinos Pavlopoulou, Niki Papasavvas, Christoforos Likothanassis, Spiros Dimitrakopoulos, Christos Georgopoulos, Efstratios Moschopoulos, Charalampos Mavroudi, Seferina |
description | Highlights • EE-MC is a new unsupervised methodology for predicting protein complexes from weighted PPI graphs. • It is by design able to overcome intrinsic limitations of existing methodologies. • It outperformed existing methodologies increasing the separation metric by 10–20%. • 72.58% of the predicted protein complexes in human are enriched for at least one GO function term. |
doi_str_mv | 10.1016/j.artmed.2014.12.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770309934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S093336571400150X</els_id><sourcerecordid>1732812378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-4da2cbcd4c10ac0b3d028d0d95644cc52f6c618e911dc6ef87380890420a52c33</originalsourceid><addsrcrecordid>eNqNks-O0zAQxiMEYsvCGyDkI5eWsZ04DgcktFr-SItAAiRulmtPWncTu9hJlt54B-48HE-Co24vXJaTD_P7ZjzfN0XxlMKKAhUvdisdhx7tigEtV5StgLJ7xYLKmi-ZFHC_WEDD-ZKLqj4rHqW0A4C6pOJhccaqWlQAclH8_hTROjM4vyH7GAZ0npjQ7zv8gYm0MfTkBt1mO6A91f_8_HUinR8w6qwOnmyi3m8TuXHDlmjiw4QdGX0a9xgnl7K8x2EbbOjC5vCSXE6hG2edjgeCfqu9ycgHHa_DREw3ptw4_-lx8aDVXcInt-958fXN5ZeLd8urj2_fX7y-Wpqq4sOytJqZtbGloaANrLkFJi3YphJlaUzFWmEEldhQao3ANnskQTZQMtAVM5yfF8-PffNm30dMg-pdMth12mMYk6J1DRyahpf_gXImKeO1vBsVdS0lZ0JktDyiJoaUIrZqH12fzVEU1Jy32qlj3mrOW1Gmct5Z9ux2wrieayfRKeAMvDoCmN2bHEaVjMPZbBfRDMoGd9eEfxuYznlndHeNB0y7MEafk1FUpSxQn-ebm0-OlgC0gm_8L7ZR1-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677883266</pqid></control><display><type>article</type><title>Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Theofilatos, Konstantinos ; Pavlopoulou, Niki ; Papasavvas, Christoforos ; Likothanassis, Spiros ; Dimitrakopoulos, Christos ; Georgopoulos, Efstratios ; Moschopoulos, Charalampos ; Mavroudi, Seferina</creator><creatorcontrib>Theofilatos, Konstantinos ; Pavlopoulou, Niki ; Papasavvas, Christoforos ; Likothanassis, Spiros ; Dimitrakopoulos, Christos ; Georgopoulos, Efstratios ; Moschopoulos, Charalampos ; Mavroudi, Seferina</creatorcontrib><description>Highlights • EE-MC is a new unsupervised methodology for predicting protein complexes from weighted PPI graphs. • It is by design able to overcome intrinsic limitations of existing methodologies. • It outperformed existing methodologies increasing the separation metric by 10–20%. • 72.58% of the predicted protein complexes in human are enriched for at least one GO function term.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2014.12.012</identifier><identifier>PMID: 25765008</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Cluster Analysis ; Clustering ; Computational Biology - methods ; Databases, Protein ; Evolutionary algorithms ; Evolutionary enhanced Markov clustering ; Functional characterization of proteins and protein complexes ; Genetic algorithms ; Human ; Humans ; Internal Medicine ; Large scale biological networks analysis ; Markov Chains ; Markov processes ; Mathematical analysis ; Methodology ; Other ; Protein complex prediction ; Protein Interaction Mapping - methods ; Protein Interaction Maps - physiology ; Proteins ; Saccharomyces cerevisiae ; State of the art ; Tuning ; Weighted protein–protein interaction networks</subject><ispartof>Artificial intelligence in medicine, 2015-03, Vol.63 (3), p.181-189</ispartof><rights>Elsevier B.V.</rights><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-4da2cbcd4c10ac0b3d028d0d95644cc52f6c618e911dc6ef87380890420a52c33</citedby><cites>FETCH-LOGICAL-c553t-4da2cbcd4c10ac0b3d028d0d95644cc52f6c618e911dc6ef87380890420a52c33</cites><orcidid>0000-0001-5284-9928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artmed.2014.12.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25765008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Theofilatos, Konstantinos</creatorcontrib><creatorcontrib>Pavlopoulou, Niki</creatorcontrib><creatorcontrib>Papasavvas, Christoforos</creatorcontrib><creatorcontrib>Likothanassis, Spiros</creatorcontrib><creatorcontrib>Dimitrakopoulos, Christos</creatorcontrib><creatorcontrib>Georgopoulos, Efstratios</creatorcontrib><creatorcontrib>Moschopoulos, Charalampos</creatorcontrib><creatorcontrib>Mavroudi, Seferina</creatorcontrib><title>Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>Highlights • EE-MC is a new unsupervised methodology for predicting protein complexes from weighted PPI graphs. • It is by design able to overcome intrinsic limitations of existing methodologies. • It outperformed existing methodologies increasing the separation metric by 10–20%. • 72.58% of the predicted protein complexes in human are enriched for at least one GO function term.</description><subject>Algorithms</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary enhanced Markov clustering</subject><subject>Functional characterization of proteins and protein complexes</subject><subject>Genetic algorithms</subject><subject>Human</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Large scale biological networks analysis</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Methodology</subject><subject>Other</subject><subject>Protein complex prediction</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Interaction Maps - physiology</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>State of the art</subject><subject>Tuning</subject><subject>Weighted protein–protein interaction networks</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks-O0zAQxiMEYsvCGyDkI5eWsZ04DgcktFr-SItAAiRulmtPWncTu9hJlt54B-48HE-Co24vXJaTD_P7ZjzfN0XxlMKKAhUvdisdhx7tigEtV5StgLJ7xYLKmi-ZFHC_WEDD-ZKLqj4rHqW0A4C6pOJhccaqWlQAclH8_hTROjM4vyH7GAZ0npjQ7zv8gYm0MfTkBt1mO6A91f_8_HUinR8w6qwOnmyi3m8TuXHDlmjiw4QdGX0a9xgnl7K8x2EbbOjC5vCSXE6hG2edjgeCfqu9ycgHHa_DREw3ptw4_-lx8aDVXcInt-958fXN5ZeLd8urj2_fX7y-Wpqq4sOytJqZtbGloaANrLkFJi3YphJlaUzFWmEEldhQao3ANnskQTZQMtAVM5yfF8-PffNm30dMg-pdMth12mMYk6J1DRyahpf_gXImKeO1vBsVdS0lZ0JktDyiJoaUIrZqH12fzVEU1Jy32qlj3mrOW1Gmct5Z9ux2wrieayfRKeAMvDoCmN2bHEaVjMPZbBfRDMoGd9eEfxuYznlndHeNB0y7MEafk1FUpSxQn-ebm0-OlgC0gm_8L7ZR1-8</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Theofilatos, Konstantinos</creator><creator>Pavlopoulou, Niki</creator><creator>Papasavvas, Christoforos</creator><creator>Likothanassis, Spiros</creator><creator>Dimitrakopoulos, Christos</creator><creator>Georgopoulos, Efstratios</creator><creator>Moschopoulos, Charalampos</creator><creator>Mavroudi, Seferina</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5284-9928</orcidid></search><sort><creationdate>20150301</creationdate><title>Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering</title><author>Theofilatos, Konstantinos ; Pavlopoulou, Niki ; Papasavvas, Christoforos ; Likothanassis, Spiros ; Dimitrakopoulos, Christos ; Georgopoulos, Efstratios ; Moschopoulos, Charalampos ; Mavroudi, Seferina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-4da2cbcd4c10ac0b3d028d0d95644cc52f6c618e911dc6ef87380890420a52c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary enhanced Markov clustering</topic><topic>Functional characterization of proteins and protein complexes</topic><topic>Genetic algorithms</topic><topic>Human</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Large scale biological networks analysis</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Methodology</topic><topic>Other</topic><topic>Protein complex prediction</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Interaction Maps - physiology</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>State of the art</topic><topic>Tuning</topic><topic>Weighted protein–protein interaction networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theofilatos, Konstantinos</creatorcontrib><creatorcontrib>Pavlopoulou, Niki</creatorcontrib><creatorcontrib>Papasavvas, Christoforos</creatorcontrib><creatorcontrib>Likothanassis, Spiros</creatorcontrib><creatorcontrib>Dimitrakopoulos, Christos</creatorcontrib><creatorcontrib>Georgopoulos, Efstratios</creatorcontrib><creatorcontrib>Moschopoulos, Charalampos</creatorcontrib><creatorcontrib>Mavroudi, Seferina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theofilatos, Konstantinos</au><au>Pavlopoulou, Niki</au><au>Papasavvas, Christoforos</au><au>Likothanassis, Spiros</au><au>Dimitrakopoulos, Christos</au><au>Georgopoulos, Efstratios</au><au>Moschopoulos, Charalampos</au><au>Mavroudi, Seferina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>63</volume><issue>3</issue><spage>181</spage><epage>189</epage><pages>181-189</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>Highlights • EE-MC is a new unsupervised methodology for predicting protein complexes from weighted PPI graphs. • It is by design able to overcome intrinsic limitations of existing methodologies. • It outperformed existing methodologies increasing the separation metric by 10–20%. • 72.58% of the predicted protein complexes in human are enriched for at least one GO function term.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25765008</pmid><doi>10.1016/j.artmed.2014.12.012</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5284-9928</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-3657 |
ispartof | Artificial intelligence in medicine, 2015-03, Vol.63 (3), p.181-189 |
issn | 0933-3657 1873-2860 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770309934 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Cluster Analysis Clustering Computational Biology - methods Databases, Protein Evolutionary algorithms Evolutionary enhanced Markov clustering Functional characterization of proteins and protein complexes Genetic algorithms Human Humans Internal Medicine Large scale biological networks analysis Markov Chains Markov processes Mathematical analysis Methodology Other Protein complex prediction Protein Interaction Mapping - methods Protein Interaction Maps - physiology Proteins Saccharomyces cerevisiae State of the art Tuning Weighted protein–protein interaction networks |
title | Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20protein%20complexes%20from%20weighted%20protein%E2%80%93protein%20interaction%20graphs%20with%20a%20novel%20unsupervised%20methodology:%20Evolutionary%20enhanced%20Markov%20clustering&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Theofilatos,%20Konstantinos&rft.date=2015-03-01&rft.volume=63&rft.issue=3&rft.spage=181&rft.epage=189&rft.pages=181-189&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2014.12.012&rft_dat=%3Cproquest_cross%3E1732812378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677883266&rft_id=info:pmid/25765008&rft_els_id=1_s2_0_S093336571400150X&rfr_iscdi=true |