Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering

Highlights • EE-MC is a new unsupervised methodology for predicting protein complexes from weighted PPI graphs. • It is by design able to overcome intrinsic limitations of existing methodologies. • It outperformed existing methodologies increasing the separation metric by 10–20%. • 72.58% of the pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 2015-03, Vol.63 (3), p.181-189
Hauptverfasser: Theofilatos, Konstantinos, Pavlopoulou, Niki, Papasavvas, Christoforos, Likothanassis, Spiros, Dimitrakopoulos, Christos, Georgopoulos, Efstratios, Moschopoulos, Charalampos, Mavroudi, Seferina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue 3
container_start_page 181
container_title Artificial intelligence in medicine
container_volume 63
creator Theofilatos, Konstantinos
Pavlopoulou, Niki
Papasavvas, Christoforos
Likothanassis, Spiros
Dimitrakopoulos, Christos
Georgopoulos, Efstratios
Moschopoulos, Charalampos
Mavroudi, Seferina
description Highlights • EE-MC is a new unsupervised methodology for predicting protein complexes from weighted PPI graphs. • It is by design able to overcome intrinsic limitations of existing methodologies. • It outperformed existing methodologies increasing the separation metric by 10–20%. • 72.58% of the predicted protein complexes in human are enriched for at least one GO function term.
doi_str_mv 10.1016/j.artmed.2014.12.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770309934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S093336571400150X</els_id><sourcerecordid>1732812378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-4da2cbcd4c10ac0b3d028d0d95644cc52f6c618e911dc6ef87380890420a52c33</originalsourceid><addsrcrecordid>eNqNks-O0zAQxiMEYsvCGyDkI5eWsZ04DgcktFr-SItAAiRulmtPWncTu9hJlt54B-48HE-Co24vXJaTD_P7ZjzfN0XxlMKKAhUvdisdhx7tigEtV5StgLJ7xYLKmi-ZFHC_WEDD-ZKLqj4rHqW0A4C6pOJhccaqWlQAclH8_hTROjM4vyH7GAZ0npjQ7zv8gYm0MfTkBt1mO6A91f_8_HUinR8w6qwOnmyi3m8TuXHDlmjiw4QdGX0a9xgnl7K8x2EbbOjC5vCSXE6hG2edjgeCfqu9ycgHHa_DREw3ptw4_-lx8aDVXcInt-958fXN5ZeLd8urj2_fX7y-Wpqq4sOytJqZtbGloaANrLkFJi3YphJlaUzFWmEEldhQao3ANnskQTZQMtAVM5yfF8-PffNm30dMg-pdMth12mMYk6J1DRyahpf_gXImKeO1vBsVdS0lZ0JktDyiJoaUIrZqH12fzVEU1Jy32qlj3mrOW1Gmct5Z9ux2wrieayfRKeAMvDoCmN2bHEaVjMPZbBfRDMoGd9eEfxuYznlndHeNB0y7MEafk1FUpSxQn-ebm0-OlgC0gm_8L7ZR1-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677883266</pqid></control><display><type>article</type><title>Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Theofilatos, Konstantinos ; Pavlopoulou, Niki ; Papasavvas, Christoforos ; Likothanassis, Spiros ; Dimitrakopoulos, Christos ; Georgopoulos, Efstratios ; Moschopoulos, Charalampos ; Mavroudi, Seferina</creator><creatorcontrib>Theofilatos, Konstantinos ; Pavlopoulou, Niki ; Papasavvas, Christoforos ; Likothanassis, Spiros ; Dimitrakopoulos, Christos ; Georgopoulos, Efstratios ; Moschopoulos, Charalampos ; Mavroudi, Seferina</creatorcontrib><description>Highlights • EE-MC is a new unsupervised methodology for predicting protein complexes from weighted PPI graphs. • It is by design able to overcome intrinsic limitations of existing methodologies. • It outperformed existing methodologies increasing the separation metric by 10–20%. • 72.58% of the predicted protein complexes in human are enriched for at least one GO function term.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2014.12.012</identifier><identifier>PMID: 25765008</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Cluster Analysis ; Clustering ; Computational Biology - methods ; Databases, Protein ; Evolutionary algorithms ; Evolutionary enhanced Markov clustering ; Functional characterization of proteins and protein complexes ; Genetic algorithms ; Human ; Humans ; Internal Medicine ; Large scale biological networks analysis ; Markov Chains ; Markov processes ; Mathematical analysis ; Methodology ; Other ; Protein complex prediction ; Protein Interaction Mapping - methods ; Protein Interaction Maps - physiology ; Proteins ; Saccharomyces cerevisiae ; State of the art ; Tuning ; Weighted protein–protein interaction networks</subject><ispartof>Artificial intelligence in medicine, 2015-03, Vol.63 (3), p.181-189</ispartof><rights>Elsevier B.V.</rights><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-4da2cbcd4c10ac0b3d028d0d95644cc52f6c618e911dc6ef87380890420a52c33</citedby><cites>FETCH-LOGICAL-c553t-4da2cbcd4c10ac0b3d028d0d95644cc52f6c618e911dc6ef87380890420a52c33</cites><orcidid>0000-0001-5284-9928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artmed.2014.12.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25765008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Theofilatos, Konstantinos</creatorcontrib><creatorcontrib>Pavlopoulou, Niki</creatorcontrib><creatorcontrib>Papasavvas, Christoforos</creatorcontrib><creatorcontrib>Likothanassis, Spiros</creatorcontrib><creatorcontrib>Dimitrakopoulos, Christos</creatorcontrib><creatorcontrib>Georgopoulos, Efstratios</creatorcontrib><creatorcontrib>Moschopoulos, Charalampos</creatorcontrib><creatorcontrib>Mavroudi, Seferina</creatorcontrib><title>Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>Highlights • EE-MC is a new unsupervised methodology for predicting protein complexes from weighted PPI graphs. • It is by design able to overcome intrinsic limitations of existing methodologies. • It outperformed existing methodologies increasing the separation metric by 10–20%. • 72.58% of the predicted protein complexes in human are enriched for at least one GO function term.</description><subject>Algorithms</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary enhanced Markov clustering</subject><subject>Functional characterization of proteins and protein complexes</subject><subject>Genetic algorithms</subject><subject>Human</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Large scale biological networks analysis</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Methodology</subject><subject>Other</subject><subject>Protein complex prediction</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Interaction Maps - physiology</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>State of the art</subject><subject>Tuning</subject><subject>Weighted protein–protein interaction networks</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks-O0zAQxiMEYsvCGyDkI5eWsZ04DgcktFr-SItAAiRulmtPWncTu9hJlt54B-48HE-Co24vXJaTD_P7ZjzfN0XxlMKKAhUvdisdhx7tigEtV5StgLJ7xYLKmi-ZFHC_WEDD-ZKLqj4rHqW0A4C6pOJhccaqWlQAclH8_hTROjM4vyH7GAZ0npjQ7zv8gYm0MfTkBt1mO6A91f_8_HUinR8w6qwOnmyi3m8TuXHDlmjiw4QdGX0a9xgnl7K8x2EbbOjC5vCSXE6hG2edjgeCfqu9ycgHHa_DREw3ptw4_-lx8aDVXcInt-958fXN5ZeLd8urj2_fX7y-Wpqq4sOytJqZtbGloaANrLkFJi3YphJlaUzFWmEEldhQao3ANnskQTZQMtAVM5yfF8-PffNm30dMg-pdMth12mMYk6J1DRyahpf_gXImKeO1vBsVdS0lZ0JktDyiJoaUIrZqH12fzVEU1Jy32qlj3mrOW1Gmct5Z9ux2wrieayfRKeAMvDoCmN2bHEaVjMPZbBfRDMoGd9eEfxuYznlndHeNB0y7MEafk1FUpSxQn-ebm0-OlgC0gm_8L7ZR1-8</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Theofilatos, Konstantinos</creator><creator>Pavlopoulou, Niki</creator><creator>Papasavvas, Christoforos</creator><creator>Likothanassis, Spiros</creator><creator>Dimitrakopoulos, Christos</creator><creator>Georgopoulos, Efstratios</creator><creator>Moschopoulos, Charalampos</creator><creator>Mavroudi, Seferina</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5284-9928</orcidid></search><sort><creationdate>20150301</creationdate><title>Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering</title><author>Theofilatos, Konstantinos ; Pavlopoulou, Niki ; Papasavvas, Christoforos ; Likothanassis, Spiros ; Dimitrakopoulos, Christos ; Georgopoulos, Efstratios ; Moschopoulos, Charalampos ; Mavroudi, Seferina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-4da2cbcd4c10ac0b3d028d0d95644cc52f6c618e911dc6ef87380890420a52c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary enhanced Markov clustering</topic><topic>Functional characterization of proteins and protein complexes</topic><topic>Genetic algorithms</topic><topic>Human</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Large scale biological networks analysis</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Methodology</topic><topic>Other</topic><topic>Protein complex prediction</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Interaction Maps - physiology</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>State of the art</topic><topic>Tuning</topic><topic>Weighted protein–protein interaction networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theofilatos, Konstantinos</creatorcontrib><creatorcontrib>Pavlopoulou, Niki</creatorcontrib><creatorcontrib>Papasavvas, Christoforos</creatorcontrib><creatorcontrib>Likothanassis, Spiros</creatorcontrib><creatorcontrib>Dimitrakopoulos, Christos</creatorcontrib><creatorcontrib>Georgopoulos, Efstratios</creatorcontrib><creatorcontrib>Moschopoulos, Charalampos</creatorcontrib><creatorcontrib>Mavroudi, Seferina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theofilatos, Konstantinos</au><au>Pavlopoulou, Niki</au><au>Papasavvas, Christoforos</au><au>Likothanassis, Spiros</au><au>Dimitrakopoulos, Christos</au><au>Georgopoulos, Efstratios</au><au>Moschopoulos, Charalampos</au><au>Mavroudi, Seferina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>63</volume><issue>3</issue><spage>181</spage><epage>189</epage><pages>181-189</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>Highlights • EE-MC is a new unsupervised methodology for predicting protein complexes from weighted PPI graphs. • It is by design able to overcome intrinsic limitations of existing methodologies. • It outperformed existing methodologies increasing the separation metric by 10–20%. • 72.58% of the predicted protein complexes in human are enriched for at least one GO function term.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25765008</pmid><doi>10.1016/j.artmed.2014.12.012</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5284-9928</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0933-3657
ispartof Artificial intelligence in medicine, 2015-03, Vol.63 (3), p.181-189
issn 0933-3657
1873-2860
language eng
recordid cdi_proquest_miscellaneous_1770309934
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Cluster Analysis
Clustering
Computational Biology - methods
Databases, Protein
Evolutionary algorithms
Evolutionary enhanced Markov clustering
Functional characterization of proteins and protein complexes
Genetic algorithms
Human
Humans
Internal Medicine
Large scale biological networks analysis
Markov Chains
Markov processes
Mathematical analysis
Methodology
Other
Protein complex prediction
Protein Interaction Mapping - methods
Protein Interaction Maps - physiology
Proteins
Saccharomyces cerevisiae
State of the art
Tuning
Weighted protein–protein interaction networks
title Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20protein%20complexes%20from%20weighted%20protein%E2%80%93protein%20interaction%20graphs%20with%20a%20novel%20unsupervised%20methodology:%20Evolutionary%20enhanced%20Markov%20clustering&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Theofilatos,%20Konstantinos&rft.date=2015-03-01&rft.volume=63&rft.issue=3&rft.spage=181&rft.epage=189&rft.pages=181-189&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2014.12.012&rft_dat=%3Cproquest_cross%3E1732812378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677883266&rft_id=info:pmid/25765008&rft_els_id=1_s2_0_S093336571400150X&rfr_iscdi=true