Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy
The ultrafine-grained microstructures, mechanical properties and electrical conductivity of a Cu–0.87%Cr–0.06%Zr alloy subjected to multiple equal channel angular pressing (ECAP) at temperatures of 473–673K were investigated. The new ultrafine grains resulted from progressive increase in the misorie...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2015-04, Vol.629, p.29-40 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | |
container_start_page | 29 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 629 |
creator | Mishnev, R. Shakhova, I. Belyakov, A. Kaibyshev, R. |
description | The ultrafine-grained microstructures, mechanical properties and electrical conductivity of a Cu–0.87%Cr–0.06%Zr alloy subjected to multiple equal channel angular pressing (ECAP) at temperatures of 473–673K were investigated. The new ultrafine grains resulted from progressive increase in the misorientations of strain-induced low-angle boundaries during the multiple ECAP process. The development of ultrafine-grained microstructures is considered as a type of continuous dynamic recrystallization. The multiple ECAP process resulted in substantial strengthening of the alloy. The yield strength increased from 215MPa in the original peak aged condition to 480MPa and 535MPa after eight ECAP passes at 673K and 473K, respectively. The strengthening was attributed to the grain refinement and high dislocation densities evolved by large strain deformation. Modified Hall–Petch analysis indicated that the contribution of dislocation strengthening to the overall increment of yield stress (YS) through ECAP was higher than that of grain size strengthening. The formation of ultrafine grains containing high dislocation density leads to a small reduction in electrical conductivity from 80 to 70% IACS. |
doi_str_mv | 10.1016/j.msea.2015.01.065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770309400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509315000921</els_id><sourcerecordid>1770309400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-cdcbad308d0952ad844f643e618257a4b29942cb41dce5f91103e6c888573ec33</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvjB6hcUpAwjp2HJRq0PCUkGmhoLK892fUqccBOkLbjH_hDvgSvlppmZqR770j3EHLGIGfAqst13kfUeQGszIHlUJV7ZMaammdC8mqfzEAWLCtB8kNyFOMaAJiAckbWN9gOodejGzztnQlDHMNkxilgvKDpRr8cV-idX9IezUp7F_ukaG8pdmjG4IzuqBm8TSn36cYNdZ5qOp9-vr7nIY23QHXXDZsTctDqLuLp3z4mr3e3L_OH7On5_nF-_ZQZLuWYGWsW2nJoLMiy0LYRoq0Ex4o1RVlrsSikFIVZCGYNlq1kDJJomqYpa46G82Nyvvv7HoaPCeOoehcNdp32OExRsboGDlIAJGuxs257x4Cteg-u12GjGKgtWLVWW7BqC1YBUwlsCl3tQphKfDoMKhqH3qB1IQFRdnD_xX8BNqGFMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770309400</pqid></control><display><type>article</type><title>Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy</title><source>Elsevier ScienceDirect Journals</source><creator>Mishnev, R. ; Shakhova, I. ; Belyakov, A. ; Kaibyshev, R.</creator><creatorcontrib>Mishnev, R. ; Shakhova, I. ; Belyakov, A. ; Kaibyshev, R.</creatorcontrib><description>The ultrafine-grained microstructures, mechanical properties and electrical conductivity of a Cu–0.87%Cr–0.06%Zr alloy subjected to multiple equal channel angular pressing (ECAP) at temperatures of 473–673K were investigated. The new ultrafine grains resulted from progressive increase in the misorientations of strain-induced low-angle boundaries during the multiple ECAP process. The development of ultrafine-grained microstructures is considered as a type of continuous dynamic recrystallization. The multiple ECAP process resulted in substantial strengthening of the alloy. The yield strength increased from 215MPa in the original peak aged condition to 480MPa and 535MPa after eight ECAP passes at 673K and 473K, respectively. The strengthening was attributed to the grain refinement and high dislocation densities evolved by large strain deformation. Modified Hall–Petch analysis indicated that the contribution of dislocation strengthening to the overall increment of yield stress (YS) through ECAP was higher than that of grain size strengthening. The formation of ultrafine grains containing high dislocation density leads to a small reduction in electrical conductivity from 80 to 70% IACS.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2015.01.065</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>AGING MECHANISMS ; CHROMIUM COPPERS ; Copper base alloys ; DEFORMATION ; DENSITY ; Dislocation density ; EBSD ; Electrical conductivity ; Electrical resistivity ; Equal channel angular pressing ; Equal channel angular processing ; Grain refinement ; Hardening ; Mechanical characterization ; MECHANICAL PROPERTIES ; Microstructure ; MICROSTRUCTURES ; Non-ferrous alloys ; Resistivity ; Strengthening ; YIELD STRENGTH</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2015-04, Vol.629, p.29-40</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-cdcbad308d0952ad844f643e618257a4b29942cb41dce5f91103e6c888573ec33</citedby><cites>FETCH-LOGICAL-c399t-cdcbad308d0952ad844f643e618257a4b29942cb41dce5f91103e6c888573ec33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509315000921$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mishnev, R.</creatorcontrib><creatorcontrib>Shakhova, I.</creatorcontrib><creatorcontrib>Belyakov, A.</creatorcontrib><creatorcontrib>Kaibyshev, R.</creatorcontrib><title>Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The ultrafine-grained microstructures, mechanical properties and electrical conductivity of a Cu–0.87%Cr–0.06%Zr alloy subjected to multiple equal channel angular pressing (ECAP) at temperatures of 473–673K were investigated. The new ultrafine grains resulted from progressive increase in the misorientations of strain-induced low-angle boundaries during the multiple ECAP process. The development of ultrafine-grained microstructures is considered as a type of continuous dynamic recrystallization. The multiple ECAP process resulted in substantial strengthening of the alloy. The yield strength increased from 215MPa in the original peak aged condition to 480MPa and 535MPa after eight ECAP passes at 673K and 473K, respectively. The strengthening was attributed to the grain refinement and high dislocation densities evolved by large strain deformation. Modified Hall–Petch analysis indicated that the contribution of dislocation strengthening to the overall increment of yield stress (YS) through ECAP was higher than that of grain size strengthening. The formation of ultrafine grains containing high dislocation density leads to a small reduction in electrical conductivity from 80 to 70% IACS.</description><subject>AGING MECHANISMS</subject><subject>CHROMIUM COPPERS</subject><subject>Copper base alloys</subject><subject>DEFORMATION</subject><subject>DENSITY</subject><subject>Dislocation density</subject><subject>EBSD</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Equal channel angular pressing</subject><subject>Equal channel angular processing</subject><subject>Grain refinement</subject><subject>Hardening</subject><subject>Mechanical characterization</subject><subject>MECHANICAL PROPERTIES</subject><subject>Microstructure</subject><subject>MICROSTRUCTURES</subject><subject>Non-ferrous alloys</subject><subject>Resistivity</subject><subject>Strengthening</subject><subject>YIELD STRENGTH</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvjB6hcUpAwjp2HJRq0PCUkGmhoLK892fUqccBOkLbjH_hDvgSvlppmZqR770j3EHLGIGfAqst13kfUeQGszIHlUJV7ZMaammdC8mqfzEAWLCtB8kNyFOMaAJiAckbWN9gOodejGzztnQlDHMNkxilgvKDpRr8cV-idX9IezUp7F_ukaG8pdmjG4IzuqBm8TSn36cYNdZ5qOp9-vr7nIY23QHXXDZsTctDqLuLp3z4mr3e3L_OH7On5_nF-_ZQZLuWYGWsW2nJoLMiy0LYRoq0Ex4o1RVlrsSikFIVZCGYNlq1kDJJomqYpa46G82Nyvvv7HoaPCeOoehcNdp32OExRsboGDlIAJGuxs257x4Cteg-u12GjGKgtWLVWW7BqC1YBUwlsCl3tQphKfDoMKhqH3qB1IQFRdnD_xX8BNqGFMQ</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Mishnev, R.</creator><creator>Shakhova, I.</creator><creator>Belyakov, A.</creator><creator>Kaibyshev, R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20150401</creationdate><title>Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy</title><author>Mishnev, R. ; Shakhova, I. ; Belyakov, A. ; Kaibyshev, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-cdcbad308d0952ad844f643e618257a4b29942cb41dce5f91103e6c888573ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AGING MECHANISMS</topic><topic>CHROMIUM COPPERS</topic><topic>Copper base alloys</topic><topic>DEFORMATION</topic><topic>DENSITY</topic><topic>Dislocation density</topic><topic>EBSD</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Equal channel angular pressing</topic><topic>Equal channel angular processing</topic><topic>Grain refinement</topic><topic>Hardening</topic><topic>Mechanical characterization</topic><topic>MECHANICAL PROPERTIES</topic><topic>Microstructure</topic><topic>MICROSTRUCTURES</topic><topic>Non-ferrous alloys</topic><topic>Resistivity</topic><topic>Strengthening</topic><topic>YIELD STRENGTH</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishnev, R.</creatorcontrib><creatorcontrib>Shakhova, I.</creatorcontrib><creatorcontrib>Belyakov, A.</creatorcontrib><creatorcontrib>Kaibyshev, R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishnev, R.</au><au>Shakhova, I.</au><au>Belyakov, A.</au><au>Kaibyshev, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>629</volume><spage>29</spage><epage>40</epage><pages>29-40</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The ultrafine-grained microstructures, mechanical properties and electrical conductivity of a Cu–0.87%Cr–0.06%Zr alloy subjected to multiple equal channel angular pressing (ECAP) at temperatures of 473–673K were investigated. The new ultrafine grains resulted from progressive increase in the misorientations of strain-induced low-angle boundaries during the multiple ECAP process. The development of ultrafine-grained microstructures is considered as a type of continuous dynamic recrystallization. The multiple ECAP process resulted in substantial strengthening of the alloy. The yield strength increased from 215MPa in the original peak aged condition to 480MPa and 535MPa after eight ECAP passes at 673K and 473K, respectively. The strengthening was attributed to the grain refinement and high dislocation densities evolved by large strain deformation. Modified Hall–Petch analysis indicated that the contribution of dislocation strengthening to the overall increment of yield stress (YS) through ECAP was higher than that of grain size strengthening. The formation of ultrafine grains containing high dislocation density leads to a small reduction in electrical conductivity from 80 to 70% IACS.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2015.01.065</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2015-04, Vol.629, p.29-40 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770309400 |
source | Elsevier ScienceDirect Journals |
subjects | AGING MECHANISMS CHROMIUM COPPERS Copper base alloys DEFORMATION DENSITY Dislocation density EBSD Electrical conductivity Electrical resistivity Equal channel angular pressing Equal channel angular processing Grain refinement Hardening Mechanical characterization MECHANICAL PROPERTIES Microstructure MICROSTRUCTURES Non-ferrous alloys Resistivity Strengthening YIELD STRENGTH |
title | Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20microstructures,%20strengthening%20mechanisms,%20and%20electrical%20conductivity%20in%20a%20Cu%E2%80%93Cr%E2%80%93Zr%20alloy&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Mishnev,%20R.&rft.date=2015-04-01&rft.volume=629&rft.spage=29&rft.epage=40&rft.pages=29-40&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2015.01.065&rft_dat=%3Cproquest_cross%3E1770309400%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770309400&rft_id=info:pmid/&rft_els_id=S0921509315000921&rfr_iscdi=true |