Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy

The ultrafine-grained microstructures, mechanical properties and electrical conductivity of a Cu–0.87%Cr–0.06%Zr alloy subjected to multiple equal channel angular pressing (ECAP) at temperatures of 473–673K were investigated. The new ultrafine grains resulted from progressive increase in the misorie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2015-04, Vol.629, p.29-40
Hauptverfasser: Mishnev, R., Shakhova, I., Belyakov, A., Kaibyshev, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue
container_start_page 29
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 629
creator Mishnev, R.
Shakhova, I.
Belyakov, A.
Kaibyshev, R.
description The ultrafine-grained microstructures, mechanical properties and electrical conductivity of a Cu–0.87%Cr–0.06%Zr alloy subjected to multiple equal channel angular pressing (ECAP) at temperatures of 473–673K were investigated. The new ultrafine grains resulted from progressive increase in the misorientations of strain-induced low-angle boundaries during the multiple ECAP process. The development of ultrafine-grained microstructures is considered as a type of continuous dynamic recrystallization. The multiple ECAP process resulted in substantial strengthening of the alloy. The yield strength increased from 215MPa in the original peak aged condition to 480MPa and 535MPa after eight ECAP passes at 673K and 473K, respectively. The strengthening was attributed to the grain refinement and high dislocation densities evolved by large strain deformation. Modified Hall–Petch analysis indicated that the contribution of dislocation strengthening to the overall increment of yield stress (YS) through ECAP was higher than that of grain size strengthening. The formation of ultrafine grains containing high dislocation density leads to a small reduction in electrical conductivity from 80 to 70% IACS.
doi_str_mv 10.1016/j.msea.2015.01.065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770309400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509315000921</els_id><sourcerecordid>1770309400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-cdcbad308d0952ad844f643e618257a4b29942cb41dce5f91103e6c888573ec33</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvjB6hcUpAwjp2HJRq0PCUkGmhoLK892fUqccBOkLbjH_hDvgSvlppmZqR770j3EHLGIGfAqst13kfUeQGszIHlUJV7ZMaammdC8mqfzEAWLCtB8kNyFOMaAJiAckbWN9gOodejGzztnQlDHMNkxilgvKDpRr8cV-idX9IezUp7F_ukaG8pdmjG4IzuqBm8TSn36cYNdZ5qOp9-vr7nIY23QHXXDZsTctDqLuLp3z4mr3e3L_OH7On5_nF-_ZQZLuWYGWsW2nJoLMiy0LYRoq0Ex4o1RVlrsSikFIVZCGYNlq1kDJJomqYpa46G82Nyvvv7HoaPCeOoehcNdp32OExRsboGDlIAJGuxs257x4Cteg-u12GjGKgtWLVWW7BqC1YBUwlsCl3tQphKfDoMKhqH3qB1IQFRdnD_xX8BNqGFMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770309400</pqid></control><display><type>article</type><title>Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy</title><source>Elsevier ScienceDirect Journals</source><creator>Mishnev, R. ; Shakhova, I. ; Belyakov, A. ; Kaibyshev, R.</creator><creatorcontrib>Mishnev, R. ; Shakhova, I. ; Belyakov, A. ; Kaibyshev, R.</creatorcontrib><description>The ultrafine-grained microstructures, mechanical properties and electrical conductivity of a Cu–0.87%Cr–0.06%Zr alloy subjected to multiple equal channel angular pressing (ECAP) at temperatures of 473–673K were investigated. The new ultrafine grains resulted from progressive increase in the misorientations of strain-induced low-angle boundaries during the multiple ECAP process. The development of ultrafine-grained microstructures is considered as a type of continuous dynamic recrystallization. The multiple ECAP process resulted in substantial strengthening of the alloy. The yield strength increased from 215MPa in the original peak aged condition to 480MPa and 535MPa after eight ECAP passes at 673K and 473K, respectively. The strengthening was attributed to the grain refinement and high dislocation densities evolved by large strain deformation. Modified Hall–Petch analysis indicated that the contribution of dislocation strengthening to the overall increment of yield stress (YS) through ECAP was higher than that of grain size strengthening. The formation of ultrafine grains containing high dislocation density leads to a small reduction in electrical conductivity from 80 to 70% IACS.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2015.01.065</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>AGING MECHANISMS ; CHROMIUM COPPERS ; Copper base alloys ; DEFORMATION ; DENSITY ; Dislocation density ; EBSD ; Electrical conductivity ; Electrical resistivity ; Equal channel angular pressing ; Equal channel angular processing ; Grain refinement ; Hardening ; Mechanical characterization ; MECHANICAL PROPERTIES ; Microstructure ; MICROSTRUCTURES ; Non-ferrous alloys ; Resistivity ; Strengthening ; YIELD STRENGTH</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2015-04, Vol.629, p.29-40</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-cdcbad308d0952ad844f643e618257a4b29942cb41dce5f91103e6c888573ec33</citedby><cites>FETCH-LOGICAL-c399t-cdcbad308d0952ad844f643e618257a4b29942cb41dce5f91103e6c888573ec33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509315000921$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mishnev, R.</creatorcontrib><creatorcontrib>Shakhova, I.</creatorcontrib><creatorcontrib>Belyakov, A.</creatorcontrib><creatorcontrib>Kaibyshev, R.</creatorcontrib><title>Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The ultrafine-grained microstructures, mechanical properties and electrical conductivity of a Cu–0.87%Cr–0.06%Zr alloy subjected to multiple equal channel angular pressing (ECAP) at temperatures of 473–673K were investigated. The new ultrafine grains resulted from progressive increase in the misorientations of strain-induced low-angle boundaries during the multiple ECAP process. The development of ultrafine-grained microstructures is considered as a type of continuous dynamic recrystallization. The multiple ECAP process resulted in substantial strengthening of the alloy. The yield strength increased from 215MPa in the original peak aged condition to 480MPa and 535MPa after eight ECAP passes at 673K and 473K, respectively. The strengthening was attributed to the grain refinement and high dislocation densities evolved by large strain deformation. Modified Hall–Petch analysis indicated that the contribution of dislocation strengthening to the overall increment of yield stress (YS) through ECAP was higher than that of grain size strengthening. The formation of ultrafine grains containing high dislocation density leads to a small reduction in electrical conductivity from 80 to 70% IACS.</description><subject>AGING MECHANISMS</subject><subject>CHROMIUM COPPERS</subject><subject>Copper base alloys</subject><subject>DEFORMATION</subject><subject>DENSITY</subject><subject>Dislocation density</subject><subject>EBSD</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Equal channel angular pressing</subject><subject>Equal channel angular processing</subject><subject>Grain refinement</subject><subject>Hardening</subject><subject>Mechanical characterization</subject><subject>MECHANICAL PROPERTIES</subject><subject>Microstructure</subject><subject>MICROSTRUCTURES</subject><subject>Non-ferrous alloys</subject><subject>Resistivity</subject><subject>Strengthening</subject><subject>YIELD STRENGTH</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvjB6hcUpAwjp2HJRq0PCUkGmhoLK892fUqccBOkLbjH_hDvgSvlppmZqR770j3EHLGIGfAqst13kfUeQGszIHlUJV7ZMaammdC8mqfzEAWLCtB8kNyFOMaAJiAckbWN9gOodejGzztnQlDHMNkxilgvKDpRr8cV-idX9IezUp7F_ukaG8pdmjG4IzuqBm8TSn36cYNdZ5qOp9-vr7nIY23QHXXDZsTctDqLuLp3z4mr3e3L_OH7On5_nF-_ZQZLuWYGWsW2nJoLMiy0LYRoq0Ex4o1RVlrsSikFIVZCGYNlq1kDJJomqYpa46G82Nyvvv7HoaPCeOoehcNdp32OExRsboGDlIAJGuxs257x4Cteg-u12GjGKgtWLVWW7BqC1YBUwlsCl3tQphKfDoMKhqH3qB1IQFRdnD_xX8BNqGFMQ</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Mishnev, R.</creator><creator>Shakhova, I.</creator><creator>Belyakov, A.</creator><creator>Kaibyshev, R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20150401</creationdate><title>Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy</title><author>Mishnev, R. ; Shakhova, I. ; Belyakov, A. ; Kaibyshev, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-cdcbad308d0952ad844f643e618257a4b29942cb41dce5f91103e6c888573ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AGING MECHANISMS</topic><topic>CHROMIUM COPPERS</topic><topic>Copper base alloys</topic><topic>DEFORMATION</topic><topic>DENSITY</topic><topic>Dislocation density</topic><topic>EBSD</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Equal channel angular pressing</topic><topic>Equal channel angular processing</topic><topic>Grain refinement</topic><topic>Hardening</topic><topic>Mechanical characterization</topic><topic>MECHANICAL PROPERTIES</topic><topic>Microstructure</topic><topic>MICROSTRUCTURES</topic><topic>Non-ferrous alloys</topic><topic>Resistivity</topic><topic>Strengthening</topic><topic>YIELD STRENGTH</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishnev, R.</creatorcontrib><creatorcontrib>Shakhova, I.</creatorcontrib><creatorcontrib>Belyakov, A.</creatorcontrib><creatorcontrib>Kaibyshev, R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishnev, R.</au><au>Shakhova, I.</au><au>Belyakov, A.</au><au>Kaibyshev, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>629</volume><spage>29</spage><epage>40</epage><pages>29-40</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The ultrafine-grained microstructures, mechanical properties and electrical conductivity of a Cu–0.87%Cr–0.06%Zr alloy subjected to multiple equal channel angular pressing (ECAP) at temperatures of 473–673K were investigated. The new ultrafine grains resulted from progressive increase in the misorientations of strain-induced low-angle boundaries during the multiple ECAP process. The development of ultrafine-grained microstructures is considered as a type of continuous dynamic recrystallization. The multiple ECAP process resulted in substantial strengthening of the alloy. The yield strength increased from 215MPa in the original peak aged condition to 480MPa and 535MPa after eight ECAP passes at 673K and 473K, respectively. The strengthening was attributed to the grain refinement and high dislocation densities evolved by large strain deformation. Modified Hall–Petch analysis indicated that the contribution of dislocation strengthening to the overall increment of yield stress (YS) through ECAP was higher than that of grain size strengthening. The formation of ultrafine grains containing high dislocation density leads to a small reduction in electrical conductivity from 80 to 70% IACS.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2015.01.065</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2015-04, Vol.629, p.29-40
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_1770309400
source Elsevier ScienceDirect Journals
subjects AGING MECHANISMS
CHROMIUM COPPERS
Copper base alloys
DEFORMATION
DENSITY
Dislocation density
EBSD
Electrical conductivity
Electrical resistivity
Equal channel angular pressing
Equal channel angular processing
Grain refinement
Hardening
Mechanical characterization
MECHANICAL PROPERTIES
Microstructure
MICROSTRUCTURES
Non-ferrous alloys
Resistivity
Strengthening
YIELD STRENGTH
title Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20microstructures,%20strengthening%20mechanisms,%20and%20electrical%20conductivity%20in%20a%20Cu%E2%80%93Cr%E2%80%93Zr%20alloy&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Mishnev,%20R.&rft.date=2015-04-01&rft.volume=629&rft.spage=29&rft.epage=40&rft.pages=29-40&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2015.01.065&rft_dat=%3Cproquest_cross%3E1770309400%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770309400&rft_id=info:pmid/&rft_els_id=S0921509315000921&rfr_iscdi=true