A static heuristic approach to detecting malware targets

Nowadays malware writers usually employ several obfuscation techniques to evade detection. The number of variants detected each day has been increasing significantly. Unfortunately traditional detection approaches such as signature scanning are becoming inefficient to detect such malwares. Researche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2015-11, Vol.8 (17), p.3015-3027
Hauptverfasser: Zakeri, Mohaddeseh, Faraji Daneshgar, Fatemeh, Abbaspour, Maghsoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3027
container_issue 17
container_start_page 3015
container_title Security and communication networks
container_volume 8
creator Zakeri, Mohaddeseh
Faraji Daneshgar, Fatemeh
Abbaspour, Maghsoud
description Nowadays malware writers usually employ several obfuscation techniques to evade detection. The number of variants detected each day has been increasing significantly. Unfortunately traditional detection approaches such as signature scanning are becoming inefficient to detect such malwares. Researches show that these obfuscations make some anomalies in Portable Executable files. In this paper, by focusing on important static heuristic features and fuzzy classification algorithms, we tried to detect malwares and packed files. In addition, we used preprocessing to evade anomaly exceptions in benign files that improved our detection results. The experimental results, using over 63 000 file samples, indicate that the proposed detector achieves high detection results with low false positive and false negative rates. Furthermore, our experimental results on new malware samples that had been undetectable for many years by antivirus products and new custom packers, show that our system works well with new and unknown samples too. Copyright © 2015 John Wiley & Sons, Ltd. In this paper, by focusing on important static heuristic features and fuzzy classification algorithms, we tried to detect malwares and packed files. In addition, we used preprocessing to evade anomalies exception in benign files that improved our detection.
doi_str_mv 10.1002/sec.1228
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770309170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770309170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4018-2b7b76125630266e4472ca4e2f06eec26cfcabb9c368812f9e41377c87c425b23</originalsourceid><addsrcrecordid>eNpdkFtLw0AQhRdRsFbBnxDwxZfUvWU3eSy1VqXesF7els06aVPTpu5uqP33bqhU8GXOGfiYORyETgnuEYzphQPTI5Sme6hDMpbFOCz7O0_4ITpybo6xIFzyDkr7kfPalyaaQWNL1zq9Wtlam1nk6-gDPBhfLqfRQldrbSHy2k7Bu2N0UOjKwcmvdtHL1XAyuI7HD6ObQX8cG45JGtNc5lIQmgiGqRDAuaRGc6AFFgCGClMYneeZYSJNCS0y4IRJaVJpOE1yyrrofHs3ZPpqwHm1KJ2BqtJLqBuniJSY4YyE2UVn_9B53dhlSBeo8DyRKZGBirfUuqxgo1a2XGi7UQSrtj8V-lNtf-p5OGj1jw_lwPeO1_ZTCclkot7uR-qd3r0-PV7eqgn7AQOJccs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1726657817</pqid></control><display><type>article</type><title>A static heuristic approach to detecting malware targets</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zakeri, Mohaddeseh ; Faraji Daneshgar, Fatemeh ; Abbaspour, Maghsoud</creator><creatorcontrib>Zakeri, Mohaddeseh ; Faraji Daneshgar, Fatemeh ; Abbaspour, Maghsoud</creatorcontrib><description>Nowadays malware writers usually employ several obfuscation techniques to evade detection. The number of variants detected each day has been increasing significantly. Unfortunately traditional detection approaches such as signature scanning are becoming inefficient to detect such malwares. Researches show that these obfuscations make some anomalies in Portable Executable files. In this paper, by focusing on important static heuristic features and fuzzy classification algorithms, we tried to detect malwares and packed files. In addition, we used preprocessing to evade anomaly exceptions in benign files that improved our detection results. The experimental results, using over 63 000 file samples, indicate that the proposed detector achieves high detection results with low false positive and false negative rates. Furthermore, our experimental results on new malware samples that had been undetectable for many years by antivirus products and new custom packers, show that our system works well with new and unknown samples too. Copyright © 2015 John Wiley &amp; Sons, Ltd. In this paper, by focusing on important static heuristic features and fuzzy classification algorithms, we tried to detect malwares and packed files. In addition, we used preprocessing to evade anomalies exception in benign files that improved our detection.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1002/sec.1228</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Anomalies ; Classification ; Fuzzy ; Fuzzy set theory ; Heuristic ; machine learning ; Malware ; malware detection ; obfuscation techniques ; packer ; PE file header ; Preprocessing</subject><ispartof>Security and communication networks, 2015-11, Vol.8 (17), p.3015-3027</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4018-2b7b76125630266e4472ca4e2f06eec26cfcabb9c368812f9e41377c87c425b23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27904,27905</link.rule.ids></links><search><creatorcontrib>Zakeri, Mohaddeseh</creatorcontrib><creatorcontrib>Faraji Daneshgar, Fatemeh</creatorcontrib><creatorcontrib>Abbaspour, Maghsoud</creatorcontrib><title>A static heuristic approach to detecting malware targets</title><title>Security and communication networks</title><addtitle>Security Comm. Networks</addtitle><description>Nowadays malware writers usually employ several obfuscation techniques to evade detection. The number of variants detected each day has been increasing significantly. Unfortunately traditional detection approaches such as signature scanning are becoming inefficient to detect such malwares. Researches show that these obfuscations make some anomalies in Portable Executable files. In this paper, by focusing on important static heuristic features and fuzzy classification algorithms, we tried to detect malwares and packed files. In addition, we used preprocessing to evade anomaly exceptions in benign files that improved our detection results. The experimental results, using over 63 000 file samples, indicate that the proposed detector achieves high detection results with low false positive and false negative rates. Furthermore, our experimental results on new malware samples that had been undetectable for many years by antivirus products and new custom packers, show that our system works well with new and unknown samples too. Copyright © 2015 John Wiley &amp; Sons, Ltd. In this paper, by focusing on important static heuristic features and fuzzy classification algorithms, we tried to detect malwares and packed files. In addition, we used preprocessing to evade anomalies exception in benign files that improved our detection.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Classification</subject><subject>Fuzzy</subject><subject>Fuzzy set theory</subject><subject>Heuristic</subject><subject>machine learning</subject><subject>Malware</subject><subject>malware detection</subject><subject>obfuscation techniques</subject><subject>packer</subject><subject>PE file header</subject><subject>Preprocessing</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkFtLw0AQhRdRsFbBnxDwxZfUvWU3eSy1VqXesF7els06aVPTpu5uqP33bqhU8GXOGfiYORyETgnuEYzphQPTI5Sme6hDMpbFOCz7O0_4ITpybo6xIFzyDkr7kfPalyaaQWNL1zq9Wtlam1nk6-gDPBhfLqfRQldrbSHy2k7Bu2N0UOjKwcmvdtHL1XAyuI7HD6ObQX8cG45JGtNc5lIQmgiGqRDAuaRGc6AFFgCGClMYneeZYSJNCS0y4IRJaVJpOE1yyrrofHs3ZPpqwHm1KJ2BqtJLqBuniJSY4YyE2UVn_9B53dhlSBeo8DyRKZGBirfUuqxgo1a2XGi7UQSrtj8V-lNtf-p5OGj1jw_lwPeO1_ZTCclkot7uR-qd3r0-PV7eqgn7AQOJccs</recordid><startdate>20151125</startdate><enddate>20151125</enddate><creator>Zakeri, Mohaddeseh</creator><creator>Faraji Daneshgar, Fatemeh</creator><creator>Abbaspour, Maghsoud</creator><general>Blackwell Publishing Ltd</general><general>Hindawi Limited</general><scope>BSCLL</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20151125</creationdate><title>A static heuristic approach to detecting malware targets</title><author>Zakeri, Mohaddeseh ; Faraji Daneshgar, Fatemeh ; Abbaspour, Maghsoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4018-2b7b76125630266e4472ca4e2f06eec26cfcabb9c368812f9e41377c87c425b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Classification</topic><topic>Fuzzy</topic><topic>Fuzzy set theory</topic><topic>Heuristic</topic><topic>machine learning</topic><topic>Malware</topic><topic>malware detection</topic><topic>obfuscation techniques</topic><topic>packer</topic><topic>PE file header</topic><topic>Preprocessing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakeri, Mohaddeseh</creatorcontrib><creatorcontrib>Faraji Daneshgar, Fatemeh</creatorcontrib><creatorcontrib>Abbaspour, Maghsoud</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakeri, Mohaddeseh</au><au>Faraji Daneshgar, Fatemeh</au><au>Abbaspour, Maghsoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A static heuristic approach to detecting malware targets</atitle><jtitle>Security and communication networks</jtitle><addtitle>Security Comm. Networks</addtitle><date>2015-11-25</date><risdate>2015</risdate><volume>8</volume><issue>17</issue><spage>3015</spage><epage>3027</epage><pages>3015-3027</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Nowadays malware writers usually employ several obfuscation techniques to evade detection. The number of variants detected each day has been increasing significantly. Unfortunately traditional detection approaches such as signature scanning are becoming inefficient to detect such malwares. Researches show that these obfuscations make some anomalies in Portable Executable files. In this paper, by focusing on important static heuristic features and fuzzy classification algorithms, we tried to detect malwares and packed files. In addition, we used preprocessing to evade anomaly exceptions in benign files that improved our detection results. The experimental results, using over 63 000 file samples, indicate that the proposed detector achieves high detection results with low false positive and false negative rates. Furthermore, our experimental results on new malware samples that had been undetectable for many years by antivirus products and new custom packers, show that our system works well with new and unknown samples too. Copyright © 2015 John Wiley &amp; Sons, Ltd. In this paper, by focusing on important static heuristic features and fuzzy classification algorithms, we tried to detect malwares and packed files. In addition, we used preprocessing to evade anomalies exception in benign files that improved our detection.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/sec.1228</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2015-11, Vol.8 (17), p.3015-3027
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_miscellaneous_1770309170
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Anomalies
Classification
Fuzzy
Fuzzy set theory
Heuristic
machine learning
Malware
malware detection
obfuscation techniques
packer
PE file header
Preprocessing
title A static heuristic approach to detecting malware targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20static%20heuristic%20approach%20to%20detecting%20malware%20targets&rft.jtitle=Security%20and%20communication%20networks&rft.au=Zakeri,%20Mohaddeseh&rft.date=2015-11-25&rft.volume=8&rft.issue=17&rft.spage=3015&rft.epage=3027&rft.pages=3015-3027&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1002/sec.1228&rft_dat=%3Cproquest_wiley%3E1770309170%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1726657817&rft_id=info:pmid/&rfr_iscdi=true